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Lecture 18: Stochastic Optimization

Yudong Chen

1 Setup

The algorithms we’ve seen so far have access to a first order oracle, which returns the exact
(sub)gradient at a given point, plus potentially the function value.

gx € 9f (x)
xe X —| 1Storder I Gr(y) if £ is differentiable)
oracle
maybe also f(x)

Stochastic optimization: We are given a noisy version of the (sub)gradient:

1st order _
xeAX — stochastic oracle | 9§ (x,¢)

Here g(x, {) is a stochastic estimate of some g € df(x), where ¢ is a random variable (representing
the randomness in the stochastic estimate).

Remark 1. Some models also assume access to stochastic estimates of the function value f(x). We
do not need that here.

1.1 Examples

Example 1. g(x,¢) = gx + &, where ¢ is additive noise from, e.g., inaccurate measurements in
physical systems. Sometimes, the noise is added intentionally (for privacy).

Example 2. Finite sum minimization:

and n is large. We can take g(x, &) = Vf;(x), where i is an integer sampled uniformly at random
from {1,2,...,n}.

Example 3. Empirical risk minimization (ERM): We want to minimize

f(x) = ]E(x,y)deata [Z(X; a, b)] ’

but we do not know how to compute the expectation exactly. Suppose we have collected n data
points (a;,b;) that come from the distribution I1g,,. We can consider minimizing the empirical
loss

|~

il(x;ai; bl)

femp(x) =

=1
When n — 0, fomp — f. Here we may view g(x,&) = V femp(X) as a noisy estimate of V f(x).

1
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1.2 Assumptions
Consider the problem
min f(x). (P)
We assume that
* fis convex and M-Lipschitz (w.r.t. ||-||,).

* X is closed, convex and nonempty. The projection Py can be efficiently computed.

e Forall x € &, it holds that

(unbiased estimate)  Ez[g(x, )] = gx € 9f (%),
(bounded variance) g [Hg(x, ¢) — ngﬂ < 0% < oo,

2 Stochastic (projected sub)gradient descent

Consider the following S-PSubGD algorithm:

. - 1
X1 = argmin {ak (g (xx, Cx),u — xx) + 5 |lu — xk||§}
ueX

= Py (xx — axg(xx, k),

where a; > 0 is the stepsize to be chosen later.

2.1 Convergence analysis

In the sequel, we assume that ¢o, (1, ..., Ck, - - . are independent and identically distributed (i.i.d.).
To avoid cluttered notation, we introduce the shorthands g = g, (true subgradient) and g, =
2 (xx, &) (noisy subgradient).

As in the previous lecture, we analyze the averaged iterate x{" := Aik YK ,aix;, where A :=

k_ a;, and we use the same LI ’ L and G .
i=0 kr Lk k
k

upper bound: Uy = jk Zaif(xi> > f(x™),
i=0

k k
lower bound: Ly := = Y aif (x;) + x Y ai (gi, x" —x;) < f(x¥),
Ak i5 Ak 15
k
optimality gap bound: Gy := Uy — Ly = —Ai Y ai (gi, x" —xi) > f(xp™) — f(x¥).
ki=0
The analysis is similar to last lecture, except that we need to keep track of the stochastic error

Sk — k- We have
AoGo = —ag (g0, X" — xo) ,



UW-Madison CS/ISyE/Math/Stat 726 Spring 2023

and

ArGr — Ak1Gr1 = —ag (g, X — xx)
= A (Sk, Xk — X41) + Ak (ks X1 — X7)
= ay (Qk, Xk — Xper1) + Ak (S X1 — X°) + a4k (§k — Sk Xpr1 — X7) .

similar to last lecture additional error term

Note that x;11 = Py (xx — axg)) satisfies the minimum principle:

(a8 + Xxp1 — X, X — x51) >0,

hence
g (s X1 — X)) < (X1 — X, X7 — Xpep1)
= =2 1B 5 ker = 1B~ 5 ok — w3
It follows that

ArGr — Ar—1Gi—q

1 1 1 ~
<o gume = xean) (3 =51 = 3 ke =318 = 3 k= ) i (9= G =)

same as last lecture
2M?> 1 1 ~
< kz +5 M= x*||3 — 5 Ixest = x*|[3 +ax (g — Sk Xer1 — X°) .

same as last lecture

We take expectation of both sides. By the Law of Iterated Expectation,' we can write
E [RHS] = E []E [RHS | 5’5*1] } ,

where Cg’l := (o, ..., Cx_1) denotes all the previous randomness in iterations 0 through k — 1 (not
including ¢x). Observe that

E [ (96— 8 v — 2°) [ 8571

= (50— ) 1667 E (g — x| 8571 =

as g is unbiased and independent of x*

=B | (8k — &k P (xk — @ 8)) | C’S_l}
=B | (8k — &k P (xk — m8k) — P (xk — @) | C’éfl} E [(gk — Sk P (X — axgx)) | C’Sil} =0
as g is unbiased and independent of x;

<arE | [|gk = 8kl - [[Px (xk — ax8k) — P (xk — axgi) |l | 516_1] Cauchy-Schwarz

<arE :ﬂk gk — &ll5 | C’é_l} Py is nonexpansive

<ato?. bounded variance assumption

1 Also known as Law of Total Expectation, or Tower Rule
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It follows that

1 . 1 . a? (M? + 202
E [Aka — Ak_le_l] <E E ka —Xx H% — E ka+1 —x H% + k(z)

Summing both sides over k and telescoping, we get
E [f(xg") = f(x")] < E[GK]

_ =B+ (M +20) £ o2
- 2Ak '

The expression on the right-hand side is the same as what we got the last time for projected sub-
gradient descent (PSubGD), except for having M? + 202 in place of M. The rest of the analysis is
similar to that for PSubGD:

¢ Using constant stepsize a; = %ﬂﬁ, Vk, we get an O (ﬁ) convergence rate.
* Same discussion about anytime algorithm, unknown/unbounded diameter of X', unknown
M, etc.
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