
UW-Madison CS/ISyE/Math/Stat 726 Spring 2023

Lecture 18: Stochastic Optimization

Yudong Chen

1 Setup

The algorithms we’ve seen so far have access to a first order oracle, which returns the exact
(sub)gradient at a given point, plus potentially the function value.

x ∈ X −→ 1st order
oracle

−→
gx ∈ ∂ f (x)

(∇ f (x) if f is differentiable)
maybe also f (x)

Stochastic optimization: We are given a noisy version of the (sub)gradient:

x ∈ X −→ 1st order
stochastic oracle

−→ g̃(x, ξ)

Here g̃(x, ξ) is a stochastic estimate of some gx ∈ ∂ f (x), where ξ is a random variable (representing
the randomness in the stochastic estimate).
Remark 1. Some models also assume access to stochastic estimates of the function value f (x). We
do not need that here.

1.1 Examples

Example 1. g̃(x, ξ) = gx + ξ, where ξ is additive noise from, e.g., inaccurate measurements in
physical systems. Sometimes, the noise is added intentionally (for privacy).

Example 2. Finite sum minimization:

f (x) =
1
n

n

∑
i=1

fi(x)

and n is large. We can take g̃(x, ξ) = ∇ f ī(x), where ī is an integer sampled uniformly at random
from {1, 2, . . . , n}.

Example 3. Empirical risk minimization (ERM): We want to minimize

f (x) = E(x,y)∼Πdata
[l(x; a, b)] ,

but we do not know how to compute the expectation exactly. Suppose we have collected n data
points (ai, bi) that come from the distribution Πdata. We can consider minimizing the empirical
loss

femp(x) =
1
n

n

∑
i=1

l(x; ai; bi).

When n → ∞, femp → f . Here we may view g̃(x, ξ) = ∇ femp(x) as a noisy estimate of ∇ f (x).

1



UW-Madison CS/ISyE/Math/Stat 726 Spring 2023

1.2 Assumptions

Consider the problem
min
x∈X

f (x). (P)

We assume that

• f is convex and M-Lipschitz (w.r.t. ∥·∥2).

• X is closed, convex and nonempty. The projection PX can be efficiently computed.

• For all x ∈ X , it holds that

(unbiased estimate) Eξ [g̃(x, ξ)] = gx ∈ ∂ f (x),

(bounded variance) Eξ

[
∥g̃(x, ξ)− gx∥2

2

]
≤ σ2 < ∞.

2 Stochastic (projected sub)gradient descent

Consider the following S-PSubGD algorithm:

xk+1 = argmin
u∈X

{
ak ⟨g̃(xk, ξk), u − xk⟩+

1
2
∥u − xk∥2

2

}
= PX (xk − ak g̃(xk, ξk)) ,

where ak > 0 is the stepsize to be chosen later.

2.1 Convergence analysis

In the sequel, we assume that ξ0, ξ1, . . . , ξk, . . . are independent and identically distributed (i.i.d.).
To avoid cluttered notation, we introduce the shorthands gk ≡ gxk (true subgradient) and g̃k ≡
g̃(xk, ξk) (noisy subgradient).

As in the previous lecture, we analyze the averaged iterate xout
k := 1

Ak
∑k

i=0 aixi, where Ak :=

∑k
i=0 ai, and we use the same Uk, Lk and Gk:

upper bound: Uk :=
1

Ak

k

∑
i=0

ai f (xi) ≥ f (xout
k ),

lower bound: Lk :=
1

Ak

k

∑
i=0

ai f (xi) +
1

Ak

k

∑
i=0

ai ⟨gi, x∗ − xi⟩ ≤ f (x∗),

optimality gap bound: Gk := Uk − Lk = − 1
Ak

k

∑
i=0

ai ⟨gi, x∗ − xi⟩ ≥ f (xout
k )− f (x∗).

The analysis is similar to last lecture, except that we need to keep track of the stochastic error
gk − g̃k. We have

A0G0 = −a0 ⟨g0, x∗ − x0⟩ ,

2



UW-Madison CS/ISyE/Math/Stat 726 Spring 2023

and

AkGk − Ak−1Gk−1 = −ak ⟨gk, x∗ − xk⟩
= ak ⟨gk, xk − xk+1⟩+ ak ⟨gk, xk+1 − x∗⟩
= ak ⟨gk, xk − xk+1⟩+ ak ⟨g̃k, xk+1 − x∗⟩︸ ︷︷ ︸

similar to last lecture

+ ak ⟨gk − g̃k, xk+1 − x∗⟩︸ ︷︷ ︸
additional error term

.

Note that xk+1 = PX (xk − ak g̃k) satisfies the minimum principle:

⟨ak g̃k + xk+1 − xk, x∗ − xk+1⟩ ≥ 0,

hence

ak ⟨g̃k, xk+1 − x∗⟩ ≤ ⟨xk+1 − xk, x∗ − xk+1⟩

=
1
2
∥xk − x∗∥2

2 −
1
2
∥xk+1 − x∗∥2

2 −
1
2
∥xk − xk+1∥2

2 .

It follows that

AkGk − Ak−1Gk−1

≤ ak ⟨gk, xk − xk+1⟩+
(

1
2
∥xk − x∗∥2

2 −
1
2
∥xk+1 − x∗∥2

2 −
1
2
∥xk − xk+1∥2

2

)
︸ ︷︷ ︸

same as last lecture

+ak ⟨gk − g̃k, xk+1 − x∗⟩

≤
a2

k M2

2
+

1
2
∥xk − x∗∥2

2 −
1
2
∥xk+1 − x∗∥2

2︸ ︷︷ ︸
same as last lecture

+ak ⟨gk − g̃k, xk+1 − x∗⟩ .

We take expectation of both sides. By the Law of Iterated Expectation,1 we can write

E [RHS] = E
[
E
[
RHS | ξk−1

0

]]
,

where ξk−1
0 := (ξ0, . . . , ξk−1) denotes all the previous randomness in iterations 0 through k− 1 (not

including ξk). Observe that

E
[

ak ⟨gk − g̃k, xk+1 − x∗⟩ | ξk−1
0

]
=akE

[
⟨gk − g̃k, xk+1⟩ | ξk−1

0

]
E
[
⟨gk − g̃k, x∗⟩ | ξk−1

0

]
= 0

as g̃k is unbiased and independent of x∗

=akE
[
⟨gk − g̃k, PX (xk − ak g̃k)⟩ | ξk−1

0

]
=akE

[
⟨gk − g̃k, PX (xk − ak g̃k)− PX (xk − akgk)⟩ | ξk−1

0

]
E
[
⟨gk − g̃k, PX (xk − akgk)⟩ | ξk−1

0

]
= 0

as g̃k is unbiased and independent of xk

≤akE
[
∥gk − g̃k∥2 · ∥PX (xk − ak g̃k)− PX (xk − akgk)∥2 | ξk−1

0

]
Cauchy-Schwarz

≤akE
[

ak ∥gk − g̃k∥2
2 | ξk−1

0

]
PX is nonexpansive

≤a2
kσ2. bounded variance assumption

1Also known as Law of Total Expectation, or Tower Rule

3



UW-Madison CS/ISyE/Math/Stat 726 Spring 2023

It follows that

E [AkGk − Ak−1Gk−1] ≤ E

[
1
2
∥xk − x∗∥2

2 −
1
2
∥xk+1 − x∗∥2

2

]
+

a2
k

(
M2 + 2σ2)

2
.

Summing both sides over k and telescoping, we get

E
[

f (xout
K )− f (x∗)

]
≤ E [GK]

≤
∥x0 − x∗∥2

2 +
(

M2 + 2σ2) ∑K
k=0 a2

k
2AK

.

The expression on the right-hand side is the same as what we got the last time for projected sub-
gradient descent (PSubGD), except for having M2 + 2σ2 in place of M2. The rest of the analysis is
similar to that for PSubGD:

• Using constant stepsize ak =
∥x0−x∗∥2√

M2+2σ2
√

K+1
, ∀k, we get an O

(
1√
K

)
convergence rate.

• Same discussion about anytime algorithm, unknown/unbounded diameter of X , unknown
M, etc.

4


	Setup
	Examples
	Assumptions

	Stochastic (projected sub)gradient descent
	Convergence analysis


