Lecture 18: Stochastic Optimization

Yudong Chen

1 Setup

The algorithms we've seen so far have access to a first order oracle, which returns the exact (sub)gradient at a given point, plus potentially the function value.

$$x \in \mathcal{X} \longrightarrow \boxed{\begin{array}{c} \text{1st order} \\ \text{oracle} \end{array}} \xrightarrow{\begin{array}{c} g_x \in \partial f(x) \\ (\nabla f(x) \text{ if } f \text{ is differentiable}) \\ \text{maybe also } f(x) \end{array}$$

Stochastic optimization: We are given a *noisy* version of the (sub)gradient:

$$x \in \mathcal{X} \longrightarrow \left| \begin{array}{c} \text{1st order} \\ \text{stochastic oracle} \end{array} \right| \longrightarrow \widetilde{g}(x,\xi)$$

Here $\tilde{g}(x, \xi)$ is a stochastic estimate of some $g_x \in \partial f(x)$, where ξ is a random variable (representing the randomness in the stochastic estimate).

Remark 1. Some models also assume access to stochastic estimates of the function value f(x). We do not need that here.

1.1 Examples

Example 1. $\tilde{g}(x,\xi) = g_x + \xi$, where ξ is additive noise from, e.g., inaccurate measurements in physical systems. Sometimes, the noise is added intentionally (for privacy).

Example 2. Finite sum minimization:

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$

and *n* is large. We can take $\tilde{g}(x,\xi) = \nabla f_{\bar{i}}(x)$, where \bar{i} is an integer sampled uniformly at random from $\{1, 2, ..., n\}$.

Example 3. Empirical risk minimization (ERM): We want to minimize

$$f(x) = \mathbb{E}_{(x,y) \sim \Pi_{\text{data}}} \left[l(x;a,b) \right],$$

but we do not know how to compute the expectation exactly. Suppose we have collected *n* data points (a_i, b_i) that come from the distribution Π_{data} . We can consider minimizing the empirical loss

$$f_{\rm emp}(x) = \frac{1}{n} \sum_{i=1}^{n} l(x; a_i; b_i).$$

When $n \to \infty$, $f_{emp} \to f$. Here we may view $\tilde{g}(x, \xi) = \nabla f_{emp}(x)$ as a noisy estimate of $\nabla f(x)$.

1.2 Assumptions

Consider the problem

$$\min_{x \in \mathcal{X}} f(x). \tag{P}$$

We assume that

- *f* is convex and *M*-Lipschitz (w.r.t. $\|\cdot\|_2$).
- \mathcal{X} is closed, convex and nonempty. The projection $P_{\mathcal{X}}$ can be efficiently computed.
- For all $x \in \mathcal{X}$, it holds that

(unbiased estimate) $\mathbb{E}_{\xi} [\widetilde{g}(x,\xi)] = g_x \in \partial f(x),$ (bounded variance) $\mathbb{E}_{\xi} \left[\|\widetilde{g}(x,\xi) - g_x\|_2^2 \right] \le \sigma^2 < \infty.$

2 Stochastic (projected sub)gradient descent

Consider the following S-PSubGD algorithm:

$$\begin{aligned} x_{k+1} &= \operatorname*{argmin}_{u \in \mathcal{X}} \left\{ a_k \left\langle \widetilde{g}(x_k, \xi_k), u - x_k \right\rangle + \frac{1}{2} \left\| u - x_k \right\|_2^2 \right\} \\ &= P_{\mathcal{X}} \left(x_k - a_k \widetilde{g}(x_k, \xi_k) \right), \end{aligned}$$

where $a_k > 0$ is the stepsize to be chosen later.

2.1 Convergence analysis

In the sequel, we assume that $\xi_0, \xi_1, \ldots, \xi_k, \ldots$ are independent and identically distributed (i.i.d.). To avoid cluttered notation, we introduce the shorthands $g_k \equiv g_{x_k}$ (true subgradient) and $\tilde{g}_k \equiv \tilde{g}(x_k, \xi_k)$ (noisy subgradient).

As in the previous lecture, we analyze the averaged iterate $x_k^{\text{out}} := \frac{1}{A_k} \sum_{i=0}^k a_i x_i$, where $A_k := \sum_{i=0}^k a_i$, and we use the same U_k , L_k and G_k :

$$\begin{array}{ll} \text{upper bound:} & U_k := \frac{1}{A_k} \sum_{i=0}^k a_i f(x_i) \ge f(x_k^{\text{out}}),\\\\ \text{lower bound:} & L_k := \frac{1}{A_k} \sum_{i=0}^k a_i f(x_i) + \frac{1}{A_k} \sum_{i=0}^k a_i \left\langle g_i, x^* - x_i \right\rangle \le f(x^*),\\\\ \text{optimality gap bound:} & G_k := U_k - L_k = -\frac{1}{A_k} \sum_{i=0}^k a_i \left\langle g_i, x^* - x_i \right\rangle \ge f(x_k^{\text{out}}) - f(x^*). \end{array}$$

The analysis is similar to last lecture, except that we need to keep track of the stochastic error $g_k - \tilde{g}_k$. We have

$$A_0G_0 = -a_0 \langle g_0, x^* - x_0
angle$$
 ,

$$A_{k}G_{k} - A_{k-1}G_{k-1} = -a_{k} \langle g_{k}, x^{*} - x_{k} \rangle$$

= $a_{k} \langle g_{k}, x_{k} - x_{k+1} \rangle + a_{k} \langle g_{k}, x_{k+1} - x^{*} \rangle$
= $\underbrace{a_{k} \langle g_{k}, x_{k} - x_{k+1} \rangle + a_{k} \langle \widetilde{g}_{k}, x_{k+1} - x^{*} \rangle}_{\text{similar to last lecture}} + \underbrace{a_{k} \langle g_{k} - \widetilde{g}_{k}, x_{k+1} - x^{*} \rangle}_{\text{additional error term}}.$

Note that $x_{k+1} = P_{\mathcal{X}} (x_k - a_k \tilde{g}_k)$ satisfies the minimum principle:

$$\langle a_k \widetilde{g}_k + x_{k+1} - x_k, x^* - x_{k+1} \rangle \geq 0,$$

hence

$$a_k \langle \widetilde{g}_k, x_{k+1} - x^* \rangle \leq \langle x_{k+1} - x_k, x^* - x_{k+1} \rangle$$

= $\frac{1}{2} ||x_k - x^*||_2^2 - \frac{1}{2} ||x_{k+1} - x^*||_2^2 - \frac{1}{2} ||x_k - x_{k+1}||_2^2.$

It follows that

$$\begin{aligned} A_{k}G_{k} - A_{k-1}G_{k-1} \\ \leq \underbrace{a_{k} \langle g_{k}, x_{k} - x_{k+1} \rangle + \left(\frac{1}{2} \|x_{k} - x^{*}\|_{2}^{2} - \frac{1}{2} \|x_{k+1} - x^{*}\|_{2}^{2} - \frac{1}{2} \|x_{k} - x_{k+1}\|_{2}^{2}\right)}_{\text{same as last lecture}} + a_{k} \langle g_{k} - \widetilde{g}_{k}, x_{k+1} - x^{*} \rangle \\ \leq \underbrace{\frac{a_{k}^{2}M^{2}}{2} + \frac{1}{2} \|x_{k} - x^{*}\|_{2}^{2} - \frac{1}{2} \|x_{k+1} - x^{*}\|_{2}^{2}}_{\text{same as last lecture}} + a_{k} \langle g_{k} - \widetilde{g}_{k}, x_{k+1} - x^{*} \rangle . \end{aligned}$$

We take expectation of both sides. By the Law of Iterated Expectation,¹ we can write

$$\mathbb{E}\left[\mathrm{RHS}\right] = \mathbb{E}\left[\mathbb{E}\left[\mathrm{RHS} \mid \xi_0^{k-1}\right]\right],$$

where $\xi_0^{k-1} := (\xi_0, \dots, \xi_{k-1})$ denotes all the previous randomness in iterations 0 through k - 1 (not including ξ_k). Observe that

$$\mathbb{E} \left[a_{k} \langle g_{k} - \tilde{g}_{k}, x_{k+1} - x^{*} \rangle \mid \xi_{0}^{k-1} \right]$$

$$= a_{k} \mathbb{E} \left[\langle g_{k} - \tilde{g}_{k}, x_{k+1} \rangle \mid \xi_{0}^{k-1} \right]$$

$$= a_{k} \mathbb{E} \left[\langle g_{k} - \tilde{g}_{k}, P_{\mathcal{X}} \left(x_{k} - a_{k} \tilde{g}_{k} \right) \rangle \mid \xi_{0}^{k-1} \right]$$

$$= a_{k} \mathbb{E} \left[\langle g_{k} - \tilde{g}_{k}, P_{\mathcal{X}} \left(x_{k} - a_{k} \tilde{g}_{k} \right) - P_{\mathcal{X}} \left(x_{k} - a_{k} g_{k} \right) \rangle \mid \xi_{0}^{k-1} \right]$$

$$\leq a_{k} \mathbb{E} \left[\| g_{k} - \tilde{g}_{k} \|_{2} \cdot \| P_{\mathcal{X}} \left(x_{k} - a_{k} \tilde{g}_{k} \right) - P_{\mathcal{X}} \left(x_{k} - a_{k} g_{k} \right) \rangle \|_{2} \mid \xi_{0}^{k-1} \right]$$

$$\leq a_{k} \mathbb{E} \left[a_{k} \| g_{k} - \tilde{g}_{k} \|_{2}^{2} \mid \xi_{0}^{k-1} \right]$$

$$\leq a_{k}^{2} \sigma^{2}.$$

$$\mathbb{E}\left[\langle g_k - \widetilde{g}_k, x^* \rangle \mid \xi_0^{k-1}\right] = 0$$

as \widetilde{g}_k is unbiased and independent of x^*

$$\mathbb{E}\left[\langle g_k - \widetilde{g}_k, P_{\mathcal{X}}\left(x_k - a_k g_k\right)\rangle \mid \xi_0^{k-1}\right] = 0$$

as \tilde{g}_k is unbiased and independent of x_k Cauchy-Schwarz

 $P_{\mathcal{X}}$ is nonexpansive

bounded variance assumption

¹Also known as Law of Total Expectation, or Tower Rule

It follows that

$$\mathbb{E}\left[A_{k}G_{k}-A_{k-1}G_{k-1}\right] \leq \mathbb{E}\left[\frac{1}{2}\left\|x_{k}-x^{*}\right\|_{2}^{2}-\frac{1}{2}\left\|x_{k+1}-x^{*}\right\|_{2}^{2}\right]+\frac{a_{k}^{2}\left(M^{2}+2\sigma^{2}\right)}{2}.$$

Summing both sides over *k* and telescoping, we get

$$\mathbb{E}\left[f(x_{K}^{\text{out}}) - f(x^{*})\right] \leq \mathbb{E}\left[G_{K}\right] \\ \leq \frac{\|x_{0} - x^{*}\|_{2}^{2} + (M^{2} + 2\sigma^{2})\sum_{k=0}^{K} a_{k}^{2}}{2A_{K}}.$$

The expression on the right-hand side is the same as what we got the last time for projected subgradient descent (PSubGD), except for having $M^2 + 2\sigma^2$ in place of M^2 . The rest of the analysis is similar to that for PSubGD:

- Using constant stepsize $a_k = \frac{\|x_0 x^*\|_2}{\sqrt{M^2 + 2\sigma^2}\sqrt{K+1}}$, $\forall k$, we get an $O\left(\frac{1}{\sqrt{K}}\right)$ convergence rate.
- Same discussion about anytime algorithm, unknown/unbounded diameter of *X*, unknown *M*, etc.