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Lecture 19: Basic Newton’s Method

Yudong Chen

1 Second-Order Optimization

From now on, we will assume X = Rd (unconstrained optimization) and f : Rd → R is twice
continuously differentiable.

Second-order oracle model:

x ∈ Rd −→ 2nd order
oracle

−→ f (x),∇ f (x),∇2 f (x).

Recall our general descent method:

xk+1 = xk + αk pk,

where αk is the stepsize and pk is a search direction. If pk satisfies ⟨pk,∇ f (xk)⟩ < 0, then it is called
a descent direction at xk.

In this and subsequent lectures, we focus on search directions of the form

pk = −B−1
k ∇ f (xk),

where Bk ≻ 0. Examples:

• Bk = I: standard gradient descent, considered before;

• Bk = ∇2 f (xk): Newton’s method;

• Bk = some approximation of ∇2 f (xk): quasi-Newton’s methods.

2 Basic Newton’s Method

The basic Newton’s (BN) method uses Bk = ∇2 f (xk) with a unit stepsize αk = 1, that is,

xk+1 = xk −
(
∇2 f (xk)

)−1 ∇ f (xk). (BN)

One can verify that

xk+1 = argmin
y

{
f (xk) + ⟨∇ f (xk), y − xk⟩+

1
2
〈
∇2 f (xk)(y − xk), y − xk

〉}
,

that is, xk+1 minimizes the second-order Taylor expansion of f at xk. (Compare with GD.)
Here we assume that

• ∇2 f (xk) is invertible, so the iteration (BN) is well-defined;

• ∇2 f (xk) ≻ 0 is positive definite (p.d.), so pk =
(
∇2 f (xk)

)−1 ∇ f (xk) is a descent direction.

Later we will discuss how to handle situations where these assumptions are not satisfied.

1



UW-Madison CS/ISyE/Math/Stat 726 Spring 2023

Illustration of the steps taken by gradient descent (left) and Netwon’s method (right):1

2.1 Terminology for rates of convergence

To discuss the convergence rate of (BN) and other descent methods, we need to introduce some
terminology.

Let {xk} be a sequence in Rd that converges to some x∗ ∈ Rd. We say that the convergence is

1. Q-linear (or simply linear), if there exists r ∈ (0, 1) such that

∥xk+1 − x∗∥2 ≤ r ∥xk − x∗∥2 , ∀k sufficient large.

For example, the sequence xk = 0.5k converges to 0 linearly. We have shown that when
f is m-strongly convex and L-smooth, GD converges linearly with r =

√
1 − m

L ≈ 1 − m
2L .

Roughly speaking, linear convergence means that an ϵ accuracy can be achieves in log 1
ϵ

iterations.

2. Q-quadratic, if there exists a constant M > 0 such that

∥xk+1 − x∗∥2 ≤ M ∥xk − x∗∥2
2 , ∀k sufficient large.

Note the square on the RHS. For example, the sequence xk = 0.5(2
k) converges to 0 quadrat-

ically. Roughly speaking, quadratic convergence means that an ϵ accuracy can be achieved
in log log 1

ϵ iterations; put differently, the number of correct digits doubles at each iteration.
Quadratic convergence is much faster than linear convergence. (A picture)

3. Q-superlinear, if for any constant r > 0, there exists Kr < ∞ such that

∥xk+1 − x∗∥2 ≤ r ∥xk − x∗∥2 , ∀k ≥ Kr.

This means {xk} converges faster than linear convergence (but not necessarily as fast as
quadratic convergence).

1The figures are taken from Convex Optimization by Boyd and Vandenberghe.
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2.2 Local quadratic convergence of Newton’s method

Recall that the condition
∇ f (x∗) = 0, ∇2 f (x∗) ≻ 0 (1)

is a (2nd-order) sufficient condition for x∗ being a local minimizer of f . Also recall that ∇2 f (x) is
said to be Lipschitz-continuous in some set N if there exists a constant LH < ∞ such that∥∥∇2 f (x)−∇2 f (y)

∥∥
2 ≤ LH ∥x − y∥2 , ∀x, y ∈ N .

The basic Newton’s method converges quadratically in a neighborhood of such an x∗.

Theorem 1 (Theorem 3.5 in Nocedal-Wright). Suppose that f is twice continuously differentiable and
that its Hessian is Lipschitz-continuous in a neighborhood of x∗, where x∗ satisfies the 2nd-order sufficient
condition (1). Let {xk} be given by (BN). Then

(i) if the initial point x0 is sufficiently close to x∗, then {xk} converges to x∗;

(ii) the rate of convergence of {xk} is quadratic;

(iii) the sequence of gradient norms {∥∇ f (xk)∥2} converges to zero, with a quadratic convergence rate.

Proof. It is clear that if ∥xk+1 − x∗∥2 ≤ M ∥xk − x∗∥2
2 holds for all k and x0 is sufficiently close to

x∗ (e.g., M ∥x0 − x∗∥ < 1), then we must have ∥xk − x∗∥2
k→∞−→ 0 and thus (i) holds.

It remains to show that when ∥x0 − x∗∥2 is sufficiently small, then

1) (quadratic convergence of iterates) there exists a constant M > 0 such that ∀k : ∥xk+1 − x∗∥2 ≤
M ∥xk − x∗∥2

2, and

2) (quadratic convergence of gradients) there exists a constant M′ > 0 such that ∀k : ∥∇ f (xk+1)∥2 ≤
M′ ∥∇ f (xk)∥2

2 .

Proof of 1): Suppose that xk is in a neighborhood of x∗ where ∇2 f is LH-Lipschitz continuous.
Recall xk+1 = xk −

(
∇2 f (xk)

)−1 ∇ f (xk). Then

∥xk+1 − x∗∥2 =
∥∥∥xk − x∗ −

(
∇2 f (xk)

)−1 ∇ f (xk)
∥∥∥

2

=
∥∥∥(∇2 f (xk)

)−1 [∇2 f (xk) (xk − x∗)−∇ f (xk)
]∥∥∥

2

≤
∥∥∥(∇2 f (xk)

)−1
∥∥∥

2

∥∥∇2 f (xk) (xk − x∗)− (∇ f (xk)−∇ f (x∗))
∥∥

2 . b/c ∇ f (x∗) = 0

We know from Taylor’s Theorem that

∇ f (x∗)−∇ f (xk) =
∫ 1

0
∇2 f (xk + t(x∗ − xk)) (x∗ − xk)dt.
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It follows that

∥xk+1 − x∗∥2

≤
∥∥∥(∇2 f (xk)

)−1
∥∥∥

2

∥∥∥∥∫ 1

0

[
∇2 f (xk)−∇2 f (xk + t(x∗ − xk))

]
(xk − x∗)dt

∥∥∥∥
2

≤
∥∥∥(∇2 f (xk)

)−1
∥∥∥

2

∫ 1

0

∥∥[∇2 f (xk)−∇2 f (xk + t(x∗ − xk))
]
(xk − x∗)

∥∥
2 dt Jensen

≤
∥∥∥(∇2 f (xk)

)−1
∥∥∥

2

∫ 1

0

∥∥∇2 f (xk)−∇2 f (xk + t(x∗ − xk))
∥∥

2︸ ︷︷ ︸
≤LH t∥xk−x∗∥2

∥xk − x∗∥2 dt Cauchy-Schwarz

≤ LH

2

∥∥∥(∇2 f (xk)
)−1

∥∥∥
2
∥xk − x∗∥2

2 .

Since ∇2 f (x∗) is invertible and ∇2 f is Lipschitz-continuous in a neighborhood of x∗, there exists
some r > 0 such that∥∥∥(∇2 f (xk)

)−1
∥∥∥

2
≤ 2

∥∥∥(∇2 f (x∗)
)−1

∥∥∥
2

∀xk : ∥xk − x∗∥ ≤ r. (2)

Hence
∥xk+1 − x∗∥2 ≤ M ∥xk − x∗∥2

2

for M = LH

∥∥∥(∇2 f (x∗)
)−1

∥∥∥
2
.

Proof of 2): From xk+1 = xk −
(
∇2 f (xk)

)−1 ∇ f (xk), we can write

∇ f (xk) = −∇2 f (xk) (xk+1 − xk) . (3)

Thence

∥∇ f (xk+1)∥2 = ∥∇ f (xk+1)−∇ f (xk) +∇ f (xk)∥2

=

∥∥∥∥∫ 1

0

[
∇2 f (xk + t(xk+1 − xk))−∇2 f (xk)

]
(xk+1 − xk)dt

∥∥∥∥
2

Taylor and (3)

≤
∫ 1

0

∥∥∇2 f (xk + t(xk+1 − xk))−∇2 f (xk)
∥∥

2︸ ︷︷ ︸
≤LH t∥xk+1−xk∥2

∥xk+1 − xk∥2 dt Jensen’s, Cauchy-Schwarz

≤ LH

2
∥xk+1 − xk∥2

2

=
LH

2

∥∥∥(∇2 f (xk)
)−1 ∇ f (xk)

∥∥∥2

2

≤ LH

2
·

∥∥∥(∇2 f (xk)
)−1

∥∥∥2

2︸ ︷︷ ︸
≤4∥(∇2 f (x∗))−1∥2

2
by (2)

· ∥∇ f (xk)∥2
2

≤ M′ ∥∇ f (xk)∥2
2 ,

where M′ = 2LH

∥∥∥(∇2 f (xk)
)−1

∥∥∥2

2
.

Remark 1. If f (x) = 1
2 x⊤Ax − b⊤x is a convex quadratic function, the Hessian ∇2 f (x) = A is

independent of x and hence ∇2 f is LH-Lipschitz continuous on Rd with LH = 0. In this case,
Theorem 1 implies that (BN) converges to a global minimizer x∗ in one iteration. Of course, one
can prove this result directly by noting that x1 = x0 − A−1(Ax0 − b) = A−1b = x∗.
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3 Additional remarks (optional)

3.1 Affine invariance

A nice feature of Newton’s method is that it is invariant to linear or affine transformations (i.e.,
changes of coordinates), in the follow sense. Let {xk} be the iterates of (BN) applied to the function
f : Rd → R. Suppose T ∈ Rd×d is a nonsingular matrix. Define a new function g : Rd → R by
g(y) = f (Ty). If we apply (BN) to minimize g starting from y0 = T−1x0, then

yk = T−1xk, ∀k.

(Proof uses the chain rules ∇g(y) = T⊤∇ f (Ty) and ∇2g(y) = T⊤∇2 f (Ty)T; left as exercise.)
That is, the iterates are related by the same linear transformation. In contrast, gradient descent
lacks this property and is very sensitive to changes of coordinates (which strongly affect, e.g., the
condition number).

However, the convergence analysis of (BN) in Theorem 1 is not affine invariant: it depends very
much on the choice of coordinates. If we change the coordinate system, the values of LH, M and
M′ all change. There is an elegant way of obtaining affine invariant convergence results, which is
based on the notion of self-concordant functions.

3.2 Performance

Newton’s method converges very fast near x∗. If x0 is sufficiently close to x∗ such that the
quadratic convergence holds, usually at most six or iterations suffice for achieving a very high
accuracy.

The main drawback of Netwon’s method is the high cost of computing storing the d × d Hes-
sian matrix ∇2 f (x), especially when d is large. There are several ways for reducing the computa-
tional cost, including various inexact Newton’s methods and quasi-Newton’s methods—we will
discuss some of them later. However, these methods are still more computationally intensive in
general than first-order methods.

3.3 Global convergence?

Theorem 1 is a local convergence result: it holds when x0 is sufficiently close to x∗. If x0 is far from
x∗, the basic Newton’s method (BN) may not converge to a stationary point. Additional adjustmen
to (BN) is needed to ensure global convergence. We will discuss some of them in the next lecture.
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