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Lecture 20: Line Search Procedures; Newton’s Method with
Hessian Modification

Yudong Chen

1 Towards global convergence of Newton’s method

Last time we consider the basic Newton’s (BN) method xk+1 = xk − αk
(
∇2 f (xk)

)−1∇ f (xk).
When f is strongly convex and has Lipschitz continuous Hessian, we show that BN achieves
local quadratic convergence.

Global convergence does not hold in general for BN even if f is strongly convex, smooth and
has Lipschitz Hessians, because the stepsize αk = 1 used BN could be too large. One solution
(under these assumptions on f ) is to consider a damped version of Newton’s method:

xk+1 = xk − αk
(
∇2 f (xk)

)−1∇ f (xk),

where the stepsize αk is determined using a line search procedure.
We have discussed some line search procedures, including exact line search and backtracking

line search, in the context of gradient descent (Lecture 7–8). In this lecture, we discuss more gen-
eral line search procedures. They play an important role in Newton’s methods and other second-
order methods (such as quasi-Newton).

In f is nonconvex, the Hessian ∇2 f (x) may be indefinite or singular. Further modification to
BN is needed to ensure global convergence.

2 Line search procedures

Consider the general descent method:

xk+1 = xk + αk pk,

where αk is stepsize and pk is a search direction, meaning that ⟨pk,∇ f (xk)⟩ < 0.
Ideally, we would like to choose αk to minimize

ϕ(α) := f (xk + αpk)

(i.e., exact line search). Finding the exact minimizer is often impractical (and unnecessary). In-
stead, we settle for a “good enough” αk that satisfies certain conditions.

2.1 The Wolfe conditions

These conditions are most frequently used for nonlinear CG and quasi-Newton methods.
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2.1.1 (Weak) Wolfe conditions

Let c1, c2 be two numbers satisfying 0 < c1 < c2 < 1 (typically c1 = 10−4 and c2 = 0.9).

• WW1 (a.k.a. sufficient decrease condition or Armijo condition):

f (xk + αk pk) < f (xk) + c1αk ⟨∇ f (xk), pk⟩︸ ︷︷ ︸
<0

=: ℓ(αk).

Since ⟨∇ f (xk), pk⟩ < 0, WW1 always holds for some sufficiently small αk. When pk =
−∇ f (xk), this is the condition we used in backtracking line search for gradient descent (Lec-
ture 7–8).

• WW2 (a.k.a. curvature condition):

⟨∇ f (xk + αk pk), pk⟩ ≥ c2 ⟨∇ f (xk), pk⟩︸ ︷︷ ︸
<0

.

Intuition: Note that the LHS equals ϕ′(αk) and the RHS equals ϕ′(0). If ⟨∇ f (xk + αk pk), pk⟩
is very small (very negative), then pk is still a good descent direction as the function value
ϕ(αk) is still decreasing, so we could keep moving along pk by increasing αk.

Potential downside: WW2 may hold even when ⟨∇ f (xk + αk pk), pk⟩ > 0. If we use such an αk, we
might have moved too far. This motivates us to condition the strong Wolfe conditions.

2.1.2 Strong Wolfe conditions

Let c1, c2 be two numbers satisfying 0 < c1 < c2 < 1.

• Sufficient decrease condition:

f (xk + αk pk) < f (xk) + c1αk ⟨∇ f (xk), pk⟩ .

• Curvature condition:

|⟨∇ f (xk + αk pk), pk⟩| ≤ c2 |⟨∇ f (xk), pk⟩| .
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2.2 Existence of a good αk

Lemma 1. Suppose that f : Rd → R is continuously differentiable. Let pk be a descent direction at xk and
assume that f is bounded from below along the ray {xk + αpk | α > 0}. Then, if 0 < c1 < c2 < 1, there
exist intervals of step sizes satisfying the weak Wolfe conditions and the strong Wolfe conditions.

Proof. Let ϕ(α) := f (xk + αpk). By the lemma assumption, ϕ(·) is bounded from below.
Note that the function

ℓ(α) := f (xk) + c1α ⟨∇ f (xk), pk⟩

has a negative slope c1 ⟨∇ f (xk), pk⟩ < 0. Since c1 < 1 and ϕ(·) is bounded below, there must exist
α > 0 such that ϕ(α) = ℓ(α); that is, ℓ(·) intersects ϕ(·) at α. Let α′ > 0 be the smallest such α, with
ϕ(α′) = ℓ(α′) (see picture below). This means

f (xk + α′pk) = f (xk) + c1α′ ⟨∇ f (xk), pk⟩ . (1)

Since α′ is the smallest, it follows that

∀α < α′ : f (xk + αpk) < f (xk) + c1α ⟨∇ f (xk), pk⟩ .

So the sufficient decrease condition WW1 holds for for all α ∈ (0, α′).

On the other hand, by the mean-value theorem (Lecture 3, Taylor’s Theorem, part 2), there
exists some α′′ ∈ (0, α′) such that

ϕ(α′) = ϕ(0) + (α′ − 0) · ϕ′(α′′)
⇕

f (xk + α′pk) = f (xk) + α′
〈
∇ f (xk + α′′pk), pk

〉
. (2)

See picture above for illustration. Combining (1) and (2) gives〈
∇ f (xk + α′′pk), pk

〉
= c1 ⟨∇ f (xk), pk⟩︸ ︷︷ ︸

<0

> c2 ⟨∇ f (xk), pk⟩ (3)

since 0 < c1 < c2. Therefore, the curvature condition WW2 holds for α′′. Since f is continuously
differentiable, WW2 holds in a neighborhood of α′′ as well.

Since the LHS and RHS of (3) are both negative, equation (3) implies

|⟨∇ f (xk + αk pk), pk⟩| ≤ c2 |⟨∇ f (xk), pk⟩| ,

which is the curvature condition in strong Wolfe.
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2.3 Sufficient decrease + backtracking

The sufficient decrease condition WW1 alone is not sufficient to guarantee reasonable progress
along the direction pk, as αk may be too small. However, we may use a backtracking approach to
make sure that we choose a reasonably large αk, in which case we do not need to explicitly check
the curvature condition.

The following backtracking procedure generalized what we saw in Lecture 7–8. It is typically
used for variants of Newton’s method (but less appropriate for quasi-Newton and CG).

Algorithm 1 Backtracking Line Search

• Choose some ᾱ > 0 (initial value, typically ᾱ = 1), ρ ∈ (0, 1) (shrinkage factor), c ∈ (0, 1)
(WW1 parameter)

• Set α← ᾱ

• repeat until WW1 is satisfied, i.e., f (xk + αpk) < f (xk) + cα ⟨∇ f (xk), pk⟩:

set α← ρα

• return αk = α

Besides backtracking, there are various inexact linear search algorithms for choose an αk that
satisfies the weak or strong Wolfe conditions; see Chapter 3.5 of Nocedal-Wright (optional).

2.4 Damped Newton’s method

Consider the damped Newton’s (DN) method

xk+1 = xk − αk
(
∇2 f (xk)

)−1∇ f (xk), (DN)

where αk chosen by backtracking line search with initial value ᾱ = 1 and c < 0.5. DN converges
globally when f is strongly convex, smooth and has Lipschitz Hessians. In particular, the conver-
gence has two phases (HW5):

• Damped Newton phase: The sufficient decrease condition WW1 holds for each iteration
of (DN). Following similar analysis as in gradient descent, we can show that the iterates of
(DN) move towards x∗ starting from an arbitrary x0.

• Quadratically convergent phase: Once xk enters a sufficiently small neighborhood of x∗, it
can be shown that backtracking line search will always accept the stepsize ᾱ = 1. In this
case, (DN) becomes the basic Newton’s method and thus converges quadratically within
this neighborhood.

3 Newton’s method with Hessian modification

If f is nonconvex, dampening is insufficient, since −
(
∇2 f (xk)

)−1∇ f (xk) may not be a descent
direction or even well-defined.
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One solution: Modify the Hessian∇2 f (xk) into some p.d. matrix Bk ≽ δI, where δ > 0. Doing
so ensures that pk = −B−1

k ∇ f (xk) is a descent direction: ⟨−pk,∇ f (xk)⟩ =
〈

B−1
k ∇ f (xk),∇ f (xk)

〉
≥

λmin

(
B−1

k

)
∥∇ f (xk)∥2

2 . We then use the update

xk+1 = xk − αkB−1
k ∇ f (xk),

with αk determined by a line search procedure.

Algorithm 2 Line search Newton with Hessian modification

• Input: x0 ∈ Rd, δ > 0

• for k = 0, 1, 2, . . .

– Set Bk = ∇2 f (xk) if ∇2 f (xk) ≽ δI; otherwise Bk is chosen so that Bk ≽ δI.

– Compute pk = −B−1
k ∇ f (xk) (by solving the linear equation Bk pk = −∇ f (xk))

– Set xk+1 = xk + αk pk, where αk satisfies the Weak Wolfe Conditions.

There are several ways of choosing Bk.

• Eigenvalue modification: Suppose the Hessian has spectral decomposition

∇2 f (xk) = QΛQ⊤, Λ = diag(⃗λ).

We can set
Bk = QΛ̃Q⊤, where Λ̃ = diag

(
max

{⃗
λ, δ1

})
.

This requires computing a full eigen decomposition of∇2 f (xk), which is often too expensive
for large scale problems.

• Adding a diagonal matrix: Set

Bk = ∇2 f (xk) + max
{

0, δ− λmin
(
∇2 f (xk)

)}
I.

This requires computing/estimating the smallest eigenvalue of ∇2 f (xk).

• Other approaches do not use eigen decomposition, but instead compute Cholesky factoriza-
tion of ∇2 f (xk). See Nocedal-Wright Sec 3.4 (optional).

For convergence analysis, we assume that the modified Hessian Bk satisfies the following.
Bounded modified factorization property: for all k,

κ(Bk) := ∥Bk∥2

∥∥∥B−1
k

∥∥∥
2
=

λmax(Bk)

λmin(Bk)
≤ C,

where 0 < C < ∞. That is, the condition number of Bk is uniformly bounded for all k.

Theorem 1. Let f : Rd → R be twice continuously differentiable, and assume that the starting point x0
is such that the sublevel set L =

{
x ∈ Rd | f (x) ≤ f (x0)

}
is compact. Then, if the bounded modified

factorization property holds, we have that

lim
k→∞
∇ f (xk) = 0.
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Suppose the algorithm is converging to some second-order stationary point x∗ with∇2 f (x∗) ≽
2δI. For all sufficiently large k, we have ∇2 f (xk) ≽ δI by continuity of ∇2 f . In this case, the
algorithm will use Bk = ∇2 f (xk) and αk = 1, which becomes the basic Newton’s method and
enjoys local quadratic convergence.
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