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Lecture 21: Quasi-Newton Methods

Yudong Chen

1 Generic quasi-Newton method

A generic quasi-Newton (QN) method takes the form

xk+1 = xk − αk (Bk)
−1 ∇ f (xk)︸ ︷︷ ︸
−pk

, (QN)

where Bk ≻ 0. We assume that the stepsize αk is chosen by a linear procedure to satisfy the
weak/strong Wolfe conditions (both sufficient decrease and curvature).1 2

We want a Bk that is easier to compute than the Hessian ∇2 f (xk) but has the same “effect” as
∇2 f (xk): Bk should be such that the search direction pk = −B−1

k ∇ f (xk) approximates the Newton
direction pN

k = −∇2 f (xk)
−1∇ f (xk). The goal is to achieve superlinear convergence, i.e., faster

than first-order methods.

1.1 General results

The theorem below is general and applies to any search direction pk. We will later apply this
theorem to quasi-newton method (QN).

Theorem 1 (Theorem 3.6 in Nocedal-Wright). Suppose that f : Rd → R is twice continuously differ-
entiable. Consider the iteration xk+1 = xk + αk pk, where pk is a descent direction and αk satisfies Weak
Wolfe Conditions (WWC) with c1 ≤ 1

2 . If the sequence {xk} converges to a point x∗ such that ∇ f (x∗) = 0
and ∇2 f (x∗) ≻ 0, and if the search direction pk satisfies

lim
k→∞

∥∥∇ f (xk) +∇2 f (xk)pk
∥∥

∥pk∥
= 0, (1)

then

1. the unit stepsize αk = 1 is admissible (i.e., satisfies WWC) for all sufficient large k;

2. if αk = 1 for all k > k0, where k0 < ∞, then {xk} converges to xk superlinearly.

Theorem 1 can be applied to the damped Newton’s method. In particular, the theorem guaran-
tees that damped Newton’s method with backtracking line search accepts the stepszie αk = 1 for k
sufficiently large, in which case it reduces to basic Newton’s method and converges quadratically
(by Theorem 1 in Lecture 19).

1For reasons to become clear later, it is important that the curvature condition (not just sufficient decrease) holds.
Therefore, backtracking line search is less appropriate for Quasi-Newton methods.

2It is often assumed that the line search procedure will try αk = 1 first and accept this stepsize if it satisfies the Wolfe
Condition.
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For a general QN search direction pk = −B−1
k ∇ f (xk), the condition (1) is equivalent to

lim
k→∞

∥∥(Bk −∇2 f (xk)
)

pk
∥∥

2
∥pk∥2

= 0. (2)

The above equation can be written as
∥∥(Bk −∇2 f (xk)

)
pk
∥∥ = o(∥pk∥). Note that this condition

may hold even if Bk does not converge to ∇2 f (x∗). It suffices that Bk approximates ∇2 f (xk) well
along the search directions pk. This is a general guideline for choosing Bk.

In fact, the condition (2) is both necessary and sufficient for superlinear convergence of QN
method, as shown in the following theorem.

Theorem 2 (Theorem 3.7 in Nocedal-Wright). Suppose f : Rd → R is twice continuously differen-
tiable. Consider the iteration (QN) with αk = 1. Assume that {xk} converges to a point x∗ such that
∇ f (x∗) = 0 and ∇2 f (x∗) ≻ 0. Then {xk} converges to x∗ superlinearly if and only if (2) holds.

To prove Theorem 2, we need the following claim.
Claim 1. Condition (2) is equivalent to ∥∥∥pk − pN

k

∥∥∥ = o(pk),

where pN
k := −

(
∇2 f (xk)

)−1 ∇ f (xk) is the Newton direction.

Proof of Claim 1. We first show (2) =⇒
∥∥pk − pN

k

∥∥ = o(pk). Since pk = −B−1
k ∇ f (xk), we can write

pN
k = −

(
∇2 f (xk)

)−1 ∇ f (xk) =
(
∇2 f (xk)

)−1
Bk pk.

Hence∥∥∥pk − pN
k

∥∥∥ =
∥∥∥pk −

(
∇2 f (xk)

)−1
Bk pk

∥∥∥
=
∥∥∥(∇2 f (xk)

)−1 (∇2 f (xk)− Bk
)

pk

∥∥∥
≤
∥∥∥(∇2 f (xk)

)−1
∥∥∥ · ∥∥(∇2 f (xk)− Bk

)
pk
∥∥

≤ 2
∥∥∥(∇2 f (x∗)

)−1
∥∥∥ · o (∥pk∥)

because
∥∥∥(∇2 f (xk)

)−1
∥∥∥ ≤ 2

∥∥∥(∇2 f (x∗)
)−1
∥∥∥ for all k sufficient large, and by (2)

= o(∥pk∥).

We next show
∥∥pk − pN

k

∥∥ = o(pk) =⇒ (2). From what we have derived above:

pk − pN
k =

(
∇2 f (xk)

)−1 (∇2 f (xk)− Bk
)

pk,

hence (
∇2 f (xk)− Bk

)
pk = ∇2 f (xk)

(
pk − pN

k

)
.

It follows that ∥∥(∇2 f (xk)− Bk
)

pk
∥∥ =

∥∥∥∇2 f (xk)
(

pk − pN
k

)∥∥∥
≤
∥∥∇2 f (xk)

∥∥ ∥∥∥pk − pN
k

∥∥∥
= O(1) · o(∥pk∥),

where the last step holds since
∥∥∇2 f (xk)

∥∥ ≤ 2
∥∥∇2 f (x∗)

∥∥ = O(1).
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We are now ready to prove Theorem 2.

Proof of Theorem 2. We only prove the “if” part; “only if” part is left as exercise.
Assume

∥∥pk − pN
k

∥∥ = o(pk). Want to show superlinear convergence, i.e., ∥xk+1 − x∗∥ =
o (∥xk − x∗∥) . We have

∥xk+1 − x∗∥ = ∥xk + pk − x∗∥

=
∥∥∥xk + pN

k − x∗ + pk − pN
k

∥∥∥
≤
∥∥∥xk + pN

k − x∗
∥∥∥+ ∥∥∥pk − pN

k

∥∥∥
= O

(
∥xk − x∗∥2

)
+ o (∥pk∥)

= o (∥xk − x∗∥) + o (∥pk∥) .

It remains to show ∥pk∥ = O (∥xk − x∗∥) . Note that
∥∥pk − pN

k

∥∥ = o (∥pk∥) implies

∥pk∥ = O
(∥∥∥pN

k

∥∥∥)
= O

(∥∥∥xk + pN
k − x∗ − (xk − x∗)

∥∥∥)
≤ O

( ∥∥∥xk + pN
k − x∗

∥∥∥︸ ︷︷ ︸
=o(∥xk−x∗∥)

+ ∥xk − x∗∥
)

= O (∥xk − x∗∥) .

1.2 Basic ideas of quasi-Newton

We want to choose Bk such that

1. Bk is a good estimate of ∇2 f (xk) in the sense of (2), which guarantees superlinear conver-
gence;

2. Bk can be formed by “cheap” operations, without actually computing the Hessian ∇2 f (xk).

We consider Quasi-Newton methods that only use gradient evaluation to compute Bk. Idea of
getting information about ∇2 f from ∇ f follows from one form of Taylor’s Theorem:

∇ f (y)−∇ f (x) =
∫ 1

0
∇2 f (x + t(y − x)) (y − x)dt.

The first idea is to take finite differences ∇ f (x + ei)−∇ f (x) along n directions ei, i = 1, . . . , n.
Too expensive. Instead, we only use the gradients we evaluate anyway, namely ∇ f (xk).

In the sequel, we discuss popular Quasi-Newton methods: DFP, BFGS, SR1, and L-BFGS.

2 The DFP method

The DFP (Davidon-Fletcher-Powell) is one of the earliest efficient quasi-Newton methods.
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Quadratic model

To derive the DFP method, we begin with the following quadratic model of f :

f (xk + p) ≈ mk(p) := f (xk) + ⟨∇ f (xk), p⟩+ 1
2

p⊤Bk p.

Note that f (xk) = mk(0), ∇ f (xk) = ∇mk(0). The QN search direction is given by

pk = argmin
p∈Rd

mk(p) = −B−1
k ∇ f (xk).

We then compute xk+1 = xk + αk pk, where αk is stepsize determined using a line search procedure.
Suppose Bk has been computed, so we move on to the next iteration, where the quadratic

model is
mk+1(p) = f (xk+1) + ⟨∇ f (xk+1), p⟩+ 1

2
p⊤Bk+1 p.

Instead of computing Bk+1 from scratch, we will compute Bk+1 from Bk.

Secant equation

We want to choose Bk+1 so that mk+1 is a good quadratic model of f . A reasonable condition
is that the gradient of mk+1 agrees with the gradient of f at xk and xk+1. By construction, we
automatically have ∇mk+1(0) = ∇ f (xk+1).

What about ∇ f (xk)? Note that

∇mk+1(−αk pk) = ∇ f (xk+1)− αkBk+1 pk,

and we want the RHS to agree with ∇ f (xk). That is, we want Bk+1 to satisfy the equation

αkBk+1 pk = ∇ f (xk+1)−∇ f (xk).

Introduce the shorthands

sk := αk pk = xk+1 − xk, displacement
yk := ∇ f (xk+1)−∇ f (xk). change in gradients

Then the above equation can be written compactly as

Bk+1sk = yk, (3)

which is called the secant equation.

Curvature condition

If Bk+1 ≻ 0, then right multiplying both sides of (3) gives

s⊤k yk > 0, (4)

which called the curvature condition. This is a necessary for the existence of a p.d. Bk satisfying the
secant equation (3).
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• The curvature condition will be automatically satisfied if f is strongly convex, since

s⊤k yk = ⟨∇ f (xk+1)−∇ f (xk), xk+1 − xk⟩ > 0.

(strong monotonicity/coercivity of gradient).

• The curvature condition does not automatically hold for nonconvex functions. It holds if αk
(the stepsize for the previous iteration k) satisfies the Wolfe conditions. In particular, by WW2
(curvature condition), we have

⟨∇ f (xk+1), sk⟩ ≥ c2 ⟨∇ f (xk), sk⟩ , where c2∈ (0, 1),

hence

⟨yk, sk⟩ = ⟨∇ f (xk+1)−∇ f (xk), sk⟩
≥ (c2 − 1)︸ ︷︷ ︸

<0

⟨∇ f (xk), sk⟩︸ ︷︷ ︸
<0

> 0.

When the curvature condition holds, the secant equation Bk+1sk = yk has infinitely many solu-
tions.

Choosing Bk+1

To uniquely specify Bk+1, we can enforce that it is the “closest” matrix to Bk that satisfies the above
conditions. In particular, we compute Bk+1 by solving

min
B

∥B − Bk∥

s.t. B = B⊤

Bsk = yk,

(5)

where ∥·∥ is some matrix norm.
A norm that gives an easy (and affine-invariant) solution is the weighted Frobenius norm

∥A∥W :=
∥∥∥W1/2AW1/2

∥∥∥
F

,

where W is a p.d. weight matrix, W1/2 is the matrix square root of W (HW1 Q6), and ∥C∥2
F :=

∑d
i=1 ∑d

j=1 C2
ij is the Frobenius norm. Here W can be any matrix that satisfies Wyk = sk. For

example, we can take W = Ḡ−1
k , where Ḡk =

∫ 1
0 ∇2 f (xk + tαk pk)dt is the average Hessian. Then

Wyk = sk holds by Taylor’s Theorem:∫ 1

0
∇2 f (xk + t(xk+1 − xk)) (xk+1 − xk)︸ ︷︷ ︸

sk

dt = ∇ f (xk + 1)−∇ f (xk)︸ ︷︷ ︸
yk

.

The DFP update rules

With the above choice of the norm and weigh matrix, the unique solution to (5) is given by

(DFP) Bk+1 =

(
I −

yks⊤k
y⊤k sk

)
Bk

(
I −

sky⊤k
y⊤k sk

)
+

yky⊤k
y⊤k sk

. (6)
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The inverse Hk+1 = B−1
k+1 can also be computed efficiently, using the Sherman-Morrison-Woodbury

formula (exercise):

(DFP) Hk+1 = Hk −
Hkyky⊤k Hk

y⊤k Hkyk︸ ︷︷ ︸
rank-1

+
sks⊤k
y⊤k sk︸ ︷︷ ︸
rank-1

. (7)

The above two equations involve rank-2 modifications (exercise: show that Bk+1 − Bk has rank at
most 2). This structure can be exploited for efficient storage and computation.

In the least-change problem (5), we do not explicit enforce positive definiteness. This property
holds automatically.

Fact 1. If Bk and Hk are positive definite and y⊤k sk > 0, then Bk+1 and Hk+1 are also positive definite.

Proof. Take any vector z ̸= 0. From (6) we have

z⊤Bk+1z =

(
z − sk ·

y⊤k z
y⊤k sk

)⊤

Bk

(
z − sk ·

y⊤k z
y⊤k sk

)
+

(y⊤k z)2

y⊤k sk
.

If s⊤k z ̸= 0, the second RHS term is positive. If y⊤k z = 0, then z − sk ·
y⊤k z
y⊤k sk

= z ̸= 0 and hence first

RHS term is positive (since Bk ≻ 0). So Bk+1 ≻ 0 and consequently Hk+1 = B−1
k+1 ≻ 0.

DFP is a precursor of the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method, the most popular
quasi-Newton method.

Appendices
Sherman-Morrison-Woodbury formula:(

A + UV⊤
)−1

= A−1 − A−1U
(

I + V⊤AU
)−1

V⊤A−1,

which is valid when the matrix dimensions are compatible and all inverses on the RHS are well-
defined.
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