Lecture 21: Quasi-Newton Methods

Yudong Chen

1 Generic quasi-Newton method

A generic quasi-Newton (QN) method takes the form

$$
\begin{equation*}
x_{k+1}=x_{k}-\alpha_{k} \underbrace{\left(B_{k}\right)^{-1} \nabla f\left(x_{k}\right)}_{-p_{k}}, \tag{QN}
\end{equation*}
$$

where $B_{k} \succ 0$. We assume that the stepsize α_{k} is chosen by a linear procedure to satisfy the weak/strong Wolfe conditions (both sufficient decrease and curvature). ${ }^{1}$

We want a B_{k} that is easier to compute than the Hessian $\nabla^{2} f\left(x_{k}\right)$ but has the same "effect" as $\nabla^{2} f\left(x_{k}\right): B_{k}$ should be such that the search direction $p_{k}=-B_{k}^{-1} \nabla f\left(x_{k}\right)$ approximates the Newton direction $p_{k}^{N}=-\nabla^{2} f\left(x_{k}\right)^{-1} \nabla f\left(x_{k}\right)$. The goal is to achieve superlinear convergence, i.e., faster than first-order methods.

1.1 General results

The theorem below is general and applies to any search direction p_{k}. We will later apply this theorem to quasi-newton method (QN).

Theorem 1 (Theorem 3.6 in Nocedal-Wright). Suppose that $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is twice continuously differentiable. Consider the iteration $x_{k+1}=x_{k}+\alpha_{k} p_{k}$, where p_{k} is a descent direction and α_{k} satisfies Weak Wolfe Conditions (WWC) with $c_{1} \leq \frac{1}{2}$. If the sequence $\left\{x_{k}\right\}$ converges to a point x^{*} such that $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right) \succ 0$, and if the search direction p_{k} satisfies

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\left\|\nabla f\left(x_{k}\right)+\nabla^{2} f\left(x_{k}\right) p_{k}\right\|}{\left\|p_{k}\right\|}=0 \tag{1}
\end{equation*}
$$

then

1. the unit stepsize $\alpha_{k}=1$ is admissible (i.e., satisfies WWC) for all sufficient large k;
2. if $\alpha_{k}=1$ for all $k>k_{0}$, where $k_{0}<\infty$, then $\left\{x_{k}\right\}$ converges to x^{k} superlinearly.

Theorem 1 can be applied to the damped Newton's method. In particular, the theorem guarantees that damped Newton's method with backtracking line search accepts the stepszie $\alpha_{k}=1$ for k sufficiently large, in which case it reduces to basic Newton's method and converges quadratically (by Theorem 1 in Lecture 19).

[^0]For a general QN search direction $p_{k}=-B_{k}^{-1} \nabla f\left(x_{k}\right)$, the condition (1) is equivalent to

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\left\|\left(B_{k}-\nabla^{2} f\left(x_{k}\right)\right) p_{k}\right\|_{2}}{\left\|p_{k}\right\|_{2}}=0 \tag{2}
\end{equation*}
$$

The above equation can be written as $\left\|\left(B_{k}-\nabla^{2} f\left(x_{k}\right)\right) p_{k}\right\|=o\left(\left\|p_{k}\right\|\right)$. Note that this condition may hold even if B_{k} does not converge to $\nabla^{2} f\left(x^{*}\right)$. It suffices that B_{k} approximates $\nabla^{2} f\left(x_{k}\right)$ well along the search directions p_{k}. This is a general guideline for choosing B_{k}.

In fact, the condition (2) is both necessary and sufficient for superlinear convergence of QN method, as shown in the following theorem.

Theorem 2 (Theorem 3.7 in Nocedal-Wright). Suppose $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is twice continuously differentiable. Consider the iteration (QN) with $\alpha_{k}=1$. Assume that $\left\{x_{k}\right\}$ converges to a point x^{*} such that $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right) \succ 0$. Then $\left\{x_{k}\right\}$ converges to x^{*} superlinearly if and only if (2) holds.

To prove Theorem 2, we need the following claim.
Claim 1. Condition (2) is equivalent to

$$
\left\|p_{k}-p_{k}^{\mathrm{N}}\right\|=o\left(p_{k}\right)
$$

where $p_{k}^{\mathrm{N}}:=-\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right)$ is the Newton direction.
Proof of Claim 1. We first show (2) $\Longrightarrow\left\|p_{k}-p_{k}^{\mathrm{N}}\right\|=o\left(p_{k}\right)$. Since $p_{k}=-B_{k}^{-1} \nabla f\left(x_{k}\right)$, we can write

$$
p_{k}^{\mathrm{N}}=-\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right)=\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} B_{k} p_{k}
$$

Hence

$$
\begin{aligned}
\left\|p_{k}-p_{k}^{\mathrm{N}}\right\| & =\left\|p_{k}-\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} B_{k} p_{k}\right\| \\
& =\left\|\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1}\left(\nabla^{2} f\left(x_{k}\right)-B_{k}\right) p_{k}\right\| \\
& \leq\left\|\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1}\right\| \cdot\left\|\left(\nabla^{2} f\left(x_{k}\right)-B_{k}\right) p_{k}\right\| \\
\leq & 2\left\|\left(\nabla^{2} f\left(x^{*}\right)\right)^{-1}\right\| \cdot o\left(\left\|p_{k}\right\|\right) \\
& \quad \text { because }\left\|\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1}\right\| \leq 2\left\|\left(\nabla^{2} f\left(x^{*}\right)\right)^{-1}\right\| \text { for all } k \text { sufficient large, and by }(2) \\
& =o\left(\left\|p_{k}\right\|\right) .
\end{aligned}
$$

We next show $\left\|p_{k}-p_{k}^{\mathrm{N}}\right\|=o\left(p_{k}\right) \Longrightarrow(2)$. From what we have derived above:

$$
p_{k}-p_{k}^{\mathrm{N}}=\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1}\left(\nabla^{2} f\left(x_{k}\right)-B_{k}\right) p_{k}
$$

hence

$$
\left(\nabla^{2} f\left(x_{k}\right)-B_{k}\right) p_{k}=\nabla^{2} f\left(x_{k}\right)\left(p_{k}-p_{k}^{\mathrm{N}}\right) .
$$

It follows that

$$
\begin{aligned}
\left\|\left(\nabla^{2} f\left(x_{k}\right)-B_{k}\right) p_{k}\right\| & =\left\|\nabla^{2} f\left(x_{k}\right)\left(p_{k}-p_{k}^{\mathrm{N}}\right)\right\| \\
& \leq\left\|\nabla^{2} f\left(x_{k}\right)\right\|\left\|p_{k}-p_{k}^{\mathrm{N}}\right\| \\
& =O(1) \cdot o\left(\left\|p_{k}\right\|\right),
\end{aligned}
$$

where the last step holds since $\left\|\nabla^{2} f\left(x_{k}\right)\right\| \leq 2\left\|\nabla^{2} f\left(x^{*}\right)\right\|=O(1)$.

We are now ready to prove Theorem 2.
Proof of Theorem 2. We only prove the "if" part; "only if" part is left as exercise.
Assume $\left\|p_{k}-p_{k}^{\mathrm{N}}\right\|=o\left(p_{k}\right)$. Want to show superlinear convergence, i.e., $\left\|x_{k+1}-x^{*}\right\|=$ $o\left(\left\|x_{k}-x^{*}\right\|\right)$. We have

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\| & =\left\|x_{k}+p_{k}-x^{*}\right\| \\
& =\left\|x_{k}+p_{k}^{\mathrm{N}}-x^{*}+p_{k}-p_{k}^{\mathrm{N}}\right\| \\
& \leq\left\|x_{k}+p_{k}^{\mathrm{N}}-x^{*}\right\|+\left\|p_{k}-p_{k}^{\mathrm{N}}\right\| \\
& =O\left(\left\|x_{k}-x^{*}\right\|^{2}\right)+o\left(\left\|p_{k}\right\|\right) \\
& =o\left(\left\|x_{k}-x^{*}\right\|\right)+o\left(\left\|p_{k}\right\|\right) .
\end{aligned}
$$

It remains to show $\left\|p_{k}\right\|=O\left(\left\|x_{k}-x^{*}\right\|\right)$. Note that $\left\|p_{k}-p_{k}^{\mathrm{N}}\right\|=o\left(\left\|p_{k}\right\|\right)$ implies

$$
\begin{aligned}
\left\|p_{k}\right\| & =O\left(\left\|p_{k}^{\mathrm{N}}\right\|\right) \\
& =O\left(\left\|x_{k}+p_{k}^{\mathrm{N}}-x^{*}-\left(x_{k}-x^{*}\right)\right\|\right) \\
& \leq O(\underbrace{\left\|x_{k}+p_{k}^{\mathrm{N}}-x^{*}\right\|}_{=o\left(\left\|x_{k}-x^{*}\right\|\right)}+\left\|x_{k}-x^{*}\right\|) \\
& =O\left(\left\|x_{k}-x^{*}\right\|\right) .
\end{aligned}
$$

1.2 Basic ideas of quasi-Newton

We want to choose B_{k} such that

1. B_{k} is a good estimate of $\nabla^{2} f\left(x_{k}\right)$ in the sense of (2), which guarantees superlinear convergence;
2. B_{k} can be formed by "cheap" operations, without actually computing the Hessian $\nabla^{2} f\left(x_{k}\right)$.

We consider Quasi-Newton methods that only use gradient evaluation to compute B_{k}. Idea of getting information about $\nabla^{2} f$ from ∇f follows from one form of Taylor's Theorem:

$$
\nabla f(y)-\nabla f(x)=\int_{0}^{1} \nabla^{2} f(x+t(y-x))(y-x) \mathrm{d} t
$$

The first idea is to take finite differences $\nabla f\left(x+e_{i}\right)-\nabla f(x)$ along n directions $e_{i}, i=1, \ldots, n$. Too expensive. Instead, we only use the gradients we evaluate anyway, namely $\nabla f\left(x_{k}\right)$.

In the sequel, we discuss popular Quasi-Newton methods: DFP, BFGS, SR1, and L-BFGS.

2 The DFP method

The DFP (Davidon-Fletcher-Powell) is one of the earliest efficient quasi-Newton methods.

Quadratic model

To derive the DFP method, we begin with the following quadratic model of f :

$$
f\left(x_{k}+p\right) \approx m_{k}(p):=f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), p\right\rangle+\frac{1}{2} p^{\top} B_{k} p .
$$

Note that $f\left(x_{k}\right)=m_{k}(0), \nabla f\left(x_{k}\right)=\nabla m_{k}(0)$. The QN search direction is given by

$$
p_{k}=\underset{p \in \mathbb{R}^{d}}{\operatorname{argmin}} m_{k}(p)=-B_{k}^{-1} \nabla f\left(x_{k}\right) .
$$

We then compute $x_{k+1}=x_{k}+\alpha_{k} p_{k}$, where α_{k} is stepsize determined using a line search procedure.
Suppose B_{k} has been computed, so we move on to the next iteration, where the quadratic model is

$$
m_{k+1}(p)=f\left(x_{k+1}\right)+\left\langle\nabla f\left(x_{k+1}\right), p\right\rangle+\frac{1}{2} p^{\top} B_{k+1} p .
$$

Instead of computing B_{k+1} from scratch, we will compute B_{k+1} from B_{k}.

Secant equation

We want to choose B_{k+1} so that m_{k+1} is a good quadratic model of f. A reasonable condition is that the gradient of m_{k+1} agrees with the gradient of f at x_{k} and x_{k+1}. By construction, we automatically have $\nabla m_{k+1}(0)=\nabla f\left(x_{k+1}\right)$.

What about $\nabla f\left(x_{k}\right)$? Note that

$$
\nabla m_{k+1}\left(-\alpha_{k} p_{k}\right)=\nabla f\left(x_{k+1}\right)-\alpha_{k} B_{k+1} p_{k}
$$

and we want the RHS to agree with $\nabla f\left(x_{k}\right)$. That is, we want B_{k+1} to satisfy the equation

$$
\alpha_{k} B_{k+1} p_{k}=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right) .
$$

Introduce the shorthands

$$
\begin{array}{ll}
s_{k}:=\alpha_{k} p_{k}=x_{k+1}-x_{k}, & \text { displacement } \\
y_{k}:=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right) . & \text { change in gradients }
\end{array}
$$

Then the above equation can be written compactly as

$$
\begin{equation*}
B_{k+1} s_{k}=y_{k} \tag{3}
\end{equation*}
$$

which is called the secant equation.

Curvature condition

If $B_{k+1} \succ 0$, then right multiplying both sides of (3) gives

$$
\begin{equation*}
s_{k}^{\top} y_{k}>0 \tag{4}
\end{equation*}
$$

which called the curvature condition. This is a necessary for the existence of a p.d. B_{k} satisfying the secant equation (3).

- The curvature condition will be automatically satisfied if f is strongly convex, since

$$
s_{k}^{\top} y_{k}=\left\langle\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right), x_{k+1}-x_{k}\right\rangle>0 .
$$

(strong monotonicity/coercivity of gradient).

- The curvature condition does not automatically hold for nonconvex functions. It holds if α_{k} (the stepsize for the previous iteration k) satisfies the Wolfe conditions. In particular, by WW2 (curvature condition), we have

$$
\left\langle\nabla f\left(x_{k+1}\right), s_{k}\right\rangle \geq c_{2}\left\langle\nabla f\left(x_{k}\right), s_{k}\right\rangle, \quad \text { where } c_{2} \in(0,1),
$$

hence

$$
\begin{aligned}
\left\langle y_{k}, s_{k}\right\rangle & =\left\langle\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right), s_{k}\right\rangle \\
& \geq \underbrace{\left(c_{2}-1\right)}_{<0} \underbrace{\left\langle\nabla f\left(x_{k}\right), s_{k}\right\rangle}_{<0}>0 .
\end{aligned}
$$

When the curvature condition holds, the secant equation $B_{k+1} s_{k}=y_{k}$ has infinitely many solutions.

Choosing B_{k+1}

To uniquely specify B_{k+1}, we can enforce that it is the "closest" matrix to B_{k} that satisfies the above conditions. In particular, we compute B_{k+1} by solving

$$
\begin{gather*}
\min _{B}\left\|B-B_{k}\right\| \\
\text { s.t. } B=B^{\top} \tag{5}\\
\quad B s_{k}=y_{k},
\end{gather*}
$$

where $\|\cdot\|$ is some matrix norm.
A norm that gives an easy (and affine-invariant) solution is the weighted Frobenius norm

$$
\|A\|_{W}:=\left\|W^{1 / 2} A W^{1 / 2}\right\|_{F},
$$

where W is a p.d. weight matrix, $W^{1 / 2}$ is the matrix square root of W (HW1 Q6), and $\|C\|_{F}^{2}:=$ $\sum_{i=1}^{d} \sum_{j=1}^{d} C_{i j}^{2}$ is the Frobenius norm. Here W can be any matrix that satisfies $W y_{k}=s_{k}$. For example, we can take $W=\bar{G}_{k}^{-1}$, where $\bar{G}_{k}=\int_{0}^{1} \nabla^{2} f\left(x_{k}+t \alpha_{k} p_{k}\right) \mathrm{d} t$ is the average Hessian. Then $W y_{k}=s_{k}$ holds by Taylor's Theorem:

$$
\int_{0}^{1} \nabla^{2} f\left(x_{k}+t\left(x_{k+1}-x_{k}\right)\right) \underbrace{\left(x_{k+1}-x_{k}\right)}_{s_{k}} \mathrm{~d} t=\underbrace{\nabla f\left(x_{k}+1\right)-\nabla f\left(x_{k}\right)}_{y_{k}} .
$$

The DFP update rules

With the above choice of the norm and weigh matrix, the unique solution to (5) is given by

$$
\begin{equation*}
\text { (DFP) } \quad B_{k+1}=\left(I-\frac{y_{k} s_{k}^{\top}}{y_{k}^{\top} s_{k}}\right) B_{k}\left(I-\frac{s_{k} y_{k}^{\top}}{y_{k}^{\top} s_{k}}\right)+\frac{y_{k} y_{k}^{\top}}{y_{k}^{\top} s_{k}} . \tag{6}
\end{equation*}
$$

The inverse $H_{k+1}=B_{k+1}^{-1}$ can also be computed efficiently, using the Sherman-Morrison-Woodbury formula (exercise):

$$
\begin{equation*}
\text { (DFP) } \quad H_{k+1}=H_{k}-\underbrace{\frac{H_{k} y_{k} y_{k}^{\top} H_{k}}{y_{k}^{\top} H_{k} y_{k}}}_{\text {rank-1 }}+\underbrace{\frac{s_{k} s_{k}^{\top}}{y_{k}^{\top} s_{k}}}_{\text {rank-1 }} \text {. } \tag{7}
\end{equation*}
$$

The above two equations involve rank-2 modifications (exercise: show that $B_{k+1}-B_{k}$ has rank at most 2). This structure can be exploited for efficient storage and computation.

In the least-change problem (5), we do not explicit enforce positive definiteness. This property holds automatically.

Fact 1. If B_{k} and H_{k} are positive definite and $y_{k}^{\top} s_{k}>0$, then B_{k+1} and H_{k+1} are also positive definite.
Proof. Take any vector $z \neq 0$. From (6) we have

$$
z^{\top} B_{k+1} z=\left(z-s_{k} \cdot \frac{y_{k}^{\top} z}{y_{k}^{\top} s_{k}}\right)^{\top} B_{k}\left(z-s_{k} \cdot \frac{y_{k}^{\top} z}{y_{k}^{\top} s_{k}}\right)+\frac{\left(y_{k}^{\top} z\right)^{2}}{y_{k}^{\top} s_{k}} .
$$

If $s_{k}^{\top} z \neq 0$, the second RHS term is positive. If $y_{k}^{\top} z=0$, then $z-s_{k} \cdot \frac{y_{k}^{\top} z}{y_{k}^{\top} s_{k}}=z \neq 0$ and hence first RHS term is positive (since $B_{k} \succ 0$). So $B_{k+1} \succ 0$ and consequently $H_{k+1}=B_{k+1}^{-1} \succ 0$.

DFP is a precursor of the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method, the most popular quasi-Newton method.

Appendices

Sherman-Morrison-Woodbury formula:

$$
\left(A+U V^{\top}\right)^{-1}=A^{-1}-A^{-1} U\left(I+V^{\top} A U\right)^{-1} V^{\top} A^{-1}
$$

which is valid when the matrix dimensions are compatible and all inverses on the RHS are welldefined.

[^0]: ${ }^{1}$ For reasons to become clear later, it is important that the curvature condition (not just sufficient decrease) holds. Therefore, backtracking line search is less appropriate for Quasi-Newton methods.
 ${ }^{2}$ It is often assumed that the line search procedure will try $\alpha_{k}=1$ first and accept this stepsize if it satisfies the Wolfe Condition.

