Lecture 22: Quasi-Newton: The BFGS and SR1 Methods

Yudong Chen

1 The BFGS method

Closely related to DFP is the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method, which is the most popular quasi-Newton method.

The high level idea of BFGS is similar to DFP, except that we switch the roles of B_k and H_k:

- works with a secant equation for H_{k+1} instead of B_{k+1};
- imposes a least change condition on H_{k+1} instead of B_{k+1}.

In particular recall the DFP secant equation:

\[y_k = B_{k+1}s_k. \] (1)

Working with $H_{k+1} = B_{k+1}^{-1}$, BFGS considers the following secant equation:

\[H_{k+1}y_k = s_k. \] (2)

To find H_{k+1}, we solve the least-change problem

\[
\begin{align*}
\min_H & \quad \| H - H_k \|_W \\
\text{s.t.} & \quad H = H^\top \\
& \quad Hy_k = s_k,
\end{align*}
\] (3)

where $\| \cdot \|_W$ is the weighted Frobenius norm with weight matrix $W = \bar{G}_k = \int_0^1 \nabla^2 f(x_k + ts_k)dt$.

The solution H_{k+1} and its inverse B_{k+1} are given in closed form by

\[
H_{k+1} = \left(I - \frac{s_k y_k^\top}{s_k^\top y_k} \right) H_k \left(I - \frac{y_k s_k^\top}{s_k^\top y_k} \right) + \frac{s_k s_k^\top}{s_k^\top y_k} s_k^\top y_k, \quad \text{(BFGS)}
\]

\[
B_{k+1} = B_k - \frac{B_k s_k s_k^\top B_k}{s_k^\top B_k s_k} + \frac{y_k y_k^\top}{y_k^\top s_k} \frac{y_k s_k}{s_k^\top y_k}, \quad \text{rank-1}
\] (4)

Similar to DFP, BFGS involves rank-2 updates and maintains positive definiteness (proof left as exercise).

Fact 1. If B_k and H_k are positive definite and $y_k^\top s_k > 0$, then B_{k+1} and H_{k+1} computed using (4) are also positive definite.

DFP and BFGS are duals of each other: one can be obtained from the other using the interchanges below.

\[
\begin{array}{c|ccc}
\text{DFP} & B_{k+1} & s_k & y_k \\
\hline
\text{BFGS} & H_{k+1} & y_k & s_k
\end{array}
\]
1.1 Implementation and performance

A direct implementation of BFGS stores the $d \times d$ matrix H_k explicitly. An alternative: store σ_0 for $H_0 = \sigma_0 I$ and the pairs $(s_0, y_0), (s_1, y_1), \ldots, (s_k, y_k)$, so H_{k+1} is stored implicitly. To form the search direction $-H_k \nabla f(x_k)$ from this implicit representation, it takes $O(d)$ operations for each step, so $O(dk)$ operations in total, and storage of $O(dk)$. For $k \leq d/5$, this is better than explicit storage with cost $O(d^2)$.

It is observed that BFGS tends to outperform DFP, as BFGS can more effectively recover from a bad Hessian approximation B_k.

Some numerical results on $f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$ (from Nocedal-Wright). To achieve $\|\nabla f(x_k)\| \leq 10^{-5}$, the steepest descent (i.e., GD) method required 5264 iterations, BFGS required 34, and Newton required 21. The table shows $\|x_k - x^*\|$ for the last few iterations.

<table>
<thead>
<tr>
<th>steepest descent</th>
<th>BFGS</th>
<th>Newton</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.827e-04</td>
<td>1.70e-03</td>
<td>3.48e-02</td>
</tr>
<tr>
<td>1.826e-04</td>
<td>1.17e-03</td>
<td>1.44e-02</td>
</tr>
<tr>
<td>1.824e-04</td>
<td>1.34e-04</td>
<td>1.82e-04</td>
</tr>
<tr>
<td>1.823e-04</td>
<td>1.01e-06</td>
<td>1.17e-08</td>
</tr>
</tbody>
</table>

1.2 Convergence guarantees for BFGS

We consider the iteration $x_{k+1} = x_k - \alpha_k B^{-1}_k \nabla f(x_k)$, where B_k is updated according to BFGS (4), and α_k satisfies the Weak Wolfe Conditions with $c_1 \leq \frac{1}{2}$. Moreover, we will assume that the line search procedure will always try $\alpha_k = 1$ first and accept it when it satisfies the Wolfe Conditions.

We have global convergence guarantees for convex functions.

Theorem 1 (Global convergence; Thm 6.5 in Nocedal-Wright). **Suppose that**

- $f : \mathbb{R}^d \to \mathbb{R}$ is twice continuously differentiable, the sublevel set $\mathcal{L} := \{x \in \mathbb{R}^d \mid f(x) \leq f(x_0)\}$ is convex, and
 \[\forall x \in \mathcal{L} : \quad mI \preceq \nabla^2 f(x) \preceq MI \]
 for some $0 < m \leq M < \infty$. (Note that f has a unique minimizer x^* in \mathcal{L}.)
- The initial B_0 is symmetric p.d.

Then $\{x_k\}$ **converges to the minimizer** x^*.

Using Theorem 1, we can in fact show that the convergence is fast enough that

$$\sum_{k=1}^{\infty} \|x_k - x^*\| < \infty. \quad (5)$$

We have local superlinear convergence guarantees for general (possibly nonconvex) functions.

Theorem 2 (Local superlinear convergence; Thm 6.6 in Nocedal-Wright). **Let** $f : \mathbb{R}^d \to \mathbb{R}$ **be twice continuously differentiable. Suppose that the iterates of BFGS converge to a local minimizer** x^* **and satisfy** (5), **and the Hessian of** f **is positive definite and L-Lipschitz around** x^*, **i.e.,**

\[\|\nabla^2 f(x) - \nabla^2 f(x^*)\| \leq L \|x - x^*\|, \quad \forall x \in \mathcal{N}_{x^*}. \]

Then $\{x_k\} \xrightarrow{k \to \infty} x^*$ **at a superlinear rate.**
The proof of Theorem 2 ends by showing that
\[\lim_{k \to \infty} \frac{\| (B_k - \nabla^2 f(x_k)) s_k \|_2}{\| s_k \|_2} = 0. \]
In this case, Theorem 2 from Lecture 21 applies and guarantees superlinear convergence.

2 The SR1 (symmetric rank-1 update) method

Consider the rank-1 update
\[B_{k+1} = B_k + \sigma_k v_k v_k^T, \]
where \(\sigma_k \in \{-1, +1\} \) and \(v_k \in \mathbb{R}^d \). We choose \(\sigma_k, B_k \) so that \(B_{k+1} \) satisfies the secant equation
\[B_{k+1} s_k = y_k, \tag{6} \]
where \(s_k := x_{k+1} - x_k, y_k := \nabla f(x_{k+1}) - \nabla f(x_k) \). The secant equation is equivalent to
\[y_k - B_k s_k = \sigma_k (v_k s_k) v_k. \tag{7} \]
Assume \(v_k^T s_k \neq 0 \). Then \(v_k \) is parallel to \(y_k - B_k s_k \), i.e., \(v_k = \delta (y_k - B_k s_k) \) for some \(\delta \in \mathbb{R} \). Substituting back, we get
\[y_k - B_k s_k = \sigma_k \delta^2 s_k (y_k - B_k s_k) (y_k - B_k s_k). \]
For this equation to hold, we must have
\[\sigma_k = \text{sign} \left(s_k^T (y_k - B_k s_k) \right), \quad \delta = \pm \frac{1}{\sqrt{|s_k^T (y_k - B_k s_k)|}} \]
assuming that \(|s_k^T (y_k - B_k s_k)| \neq 0 \).

The above choice of \(\sigma_k \) and \(\delta \) are the only possible way of satisfying the secant equation with a symmetric rank-1 update. This gives the SR1 update rule for \(B_{k+1} \):
\[B_{k+1} = B_k + \frac{(y_k - B_k s_k) (y_k - B_k s_k)^T}{s_k^T (y_k - B_k s_k)}. \tag{SR1} \]

By Sherman-Morrison formula, we also have the update rule for \(H_{k+1} = B_{k+1}^{-1} \):
\[H_{k+1} = H_k + \frac{(s_k - H_k y_k) (s_k - H_k y_k)^T}{y_k^T (s_k - H_k y_k)}. \tag{SR1} \]

SR1 is very simple. However, even if \(B_k \) is p.d., \(B_{k+1} \) may not be. The same holds for \(H_k \) and \(H_{k+1} \). Therefore, SR1 is in general not used with the update \(x_{k+1} = x_k - \alpha_k B_k^{-1} \nabla f(x_k) \), as it need not give a descent direction. However, this \(B_k \) is quite useful in Trust-Region methods, which we will discuss later. The lack of positive definiteness may actually make \(B_k \) a better approximation to the true Hessian \(\nabla^2 f(x_k) \) (which may be indefinite), compared to \(B_k \) generated by DFP/BFGS.
Another major issue of SR1: the numbers $s_k^\top (y_k - B_k s_k)$ and $y_k^\top (s_k - H_k y_k)$, which appear in the denominators of the update rules, may be zero (or very small). In this case, there is no symmetric rank-1 update that satisfies the secant equation. This may happen even when f is a convex quadratic.

Let us zoom in the above issue. Based on our derivation of SR1, there are three cases:

1. If $s_k^\top (y_k - B_k s_k) \neq 0$, then B_{k+1} is uniquely defined by the SR1 update rule above.

2. If $y_k = B_k s_k$, then by (7) the only way to satisfy the secant equation is with $B_{k+1} = B_k$.

3. If $y_k \neq B_k s_k$ and $s_k^\top (y_k - B_k s_k) = 0$, then there is no symmetric rank-1 update that satisfies the secant equation.

Due to the case 3, SR1 is numerically unstable. To have all the required properties of B_k, H_k, rank-2 updates (as in DFP/BFGS) are necessary.

Nevertheless, SR1 is still used, because:

1. there exists a simple safeguard that prevents numerical instability (see below);

2. there exist some setups (e.g., constrained optimization) where it is not possible to impose the curvature condition $y_k^\top s_k > 0$, which is necessary for DFP/BFGS, but not needed in SR1.

Safeguard for SR1: Apply SR1 update only if

$$\left| s_k^\top (y_k - B_k s_k) \right| \geq r \| s_k \| \| y_k - B_k s_k \|, \quad (8)$$

where r is some small constant (e.g., 10^{-8}). Otherwise, set $B_{k+1} = B_k$ (i.e., skip the update). Note that the skipping happens when B_k is already a good approximation of the true Hessian along the direction s_k.

Hessian approximation properties of SR1:

- (NW Theorem 6.1) For strongly convex quadratic function $f(x) = \frac{1}{2} x^\top A x + b^\top x$, if $s_k^\top (y_k - B_k s_k) \neq 0$ for all k, then SR1 iterates converges to the minimizer x^* in at most d step. Moreover, if its search directions $p_k = -B_k^{-1} \nabla f(x_k)$ are linearly independent, then $H_d = A^{-1}$.

- (NW Theorem 6.2) For general f with Lipschitz continuous Hessian, if $x_k \to x^*$, (8) holds for all k, and the steps $\{s_k\}$ uniformly linearly independent, then $B_k \to \nabla^2 f(x^*)$.

(Optional) Go through the proof of Theorem 6.1.