Lecture 23: Limited-Memory BFGS (L-BFGS)

Yudong Chen

1 Basic ideas

Newton and quasi-Newton methods enjoy fast convergence (small number of iterations), but for large-scale problems each iteration may be too costly.

For example, recall the quasi-Newton method $x_{k+1} = x_k - \alpha_k H_k \nabla f(x_k)$ with BFGS update:

$$H_k = V_{k-1}^{\top} H_{k-1} V_{k-1} + \rho_{k-1} s_{k-1} s_{k-1}^{\top}, \tag{1}$$

where

$$\begin{split} \rho_k &= \frac{1}{s_k^\top y_k}, \qquad V_k = I - \rho_k y_k s_k^\top, \\ s_k &= x_{k+1} - x_k, \qquad y_k = \nabla f(x_{k+1}) - \nabla f(x_k), \end{split}$$

and the stepsize α_k satisfies WWC. The matrices B_k and H_k constructed by BFGS are often dense, even when the true Hessian is sparse. In general, BFGS requires $\Theta(d^2)$ computation per iteration and $\Theta(d^2)$ memory. For large d, $\Theta(d^2)$ may be too much.

Idea of L-BFGS: instead of storing the full matrix H_k (approximation of $\nabla^2 f(x_k)^{-1}$), construct and represent H_k implicitly using a small number of vectors $\{s_i, y_i\}$ for the last few iterations.

Intuition: we do not expect the current Hessian to depend too much on "old" vectors s_i , y_i (old iterates x_i and their gradients.)

Tradeoff: we reduce memory and computation to O(d), but we may lose local superlinear convergence—we can only guarantee linear convergence in general.

2 L-BFGS

Recall and expand the BFGS update:

$$BFGS: \qquad H_{k} = V_{k-1}^{\top} H_{k-1} V_{k-1} + \rho_{k-1} s_{k-1} s_{k-1}^{\top} \\ = V_{k-1}^{\top} V_{k-2}^{\top} H_{k-2} V_{k-2} V_{k-1} + \rho_{k-2} V_{k-2} s_{k-2} s_{k-2}^{\top} V_{k-1} + \rho_{k-1} s_{k-1} s_{k-1}^{\top} \\ = \left(V_{k-1}^{\top} V_{k-2}^{\top} \cdots V_{k-m}^{\top} \right) H_{k-m} \left(V_{k-m} V_{k-m+1} \cdots V_{k-1} \right) \\ + \rho_{k-m} \left(V_{k-1}^{\top} \cdots V_{k-m+1}^{\top} \right) s_{k-m} s_{k-m}^{\top} \left(V_{k-m+1} \cdots V_{k-1} \right) \\ + \rho_{k-m+1} \left(V_{k-1}^{\top} \cdots V_{k-m+2}^{\top} \right) s_{k-m+1} s_{k-m+1}^{\top} \left(V_{k-m+2} \cdots V_{k-1} \right) \\ + \cdots \\ + \rho_{k-2} V_{k-1}^{\top} s_{k-2} s_{k-2}^{\top} V_{k-1} \\ + \rho_{k-1} s_{k-1} s_{k-1}^{\top}. \end{cases}$$

In L-BFGS, we replace H_{k-m} (a dense $d \times d$ matrix) with some sparse matrix H_k^0 , e.g., a diagonal matrix. Thus, H_k can be constructed using the most recent $m \ll d$ pairs $\{s_i, y_i\}_{i=k-m}^{k-1}$. That is,

L-BFGS:
$$H_{k} = \left(V_{k-1}^{\top}V_{k-2}^{\top}\cdots V_{k-m}^{\top}\right)H_{k}^{0}\left(V_{k-m}V_{k-m+1}\cdots V_{k-1}\right) \\ + \rho_{k-m}\left(V_{k-1}^{\top}\cdots V_{k-m+1}^{\top}\right)s_{k-m}s_{k-m}^{\top}\left(V_{k-m+1}\cdots V_{k-1}\right) \\ + \rho_{k-m+1}\left(V_{k-1}^{\top}\cdots V_{k-m+2}^{\top}\right)s_{k-m+1}s_{k-m+1}^{\top}\left(V_{k-m+2}\cdots V_{k-1}\right) \\ + \cdots \\ + \rho_{k-1}s_{k-1}s_{k-1}^{\top}.$$

In fact, we only need the *d*-dimensional vector $H_k \nabla f(x_k)$ to update $x_{k+1} = x_k - \alpha_k H_k \nabla f(x_k)$. Therefore, we do not even need to compute or store the matrix H_k explicitly. Instead, we only store the vectors $\{s_i, y_i\}_{i=k-m}^{k-1}$, from which $H_k \nabla f(x_k)$ can be computed using only vector-vector multiplications, thanks to tricks like $(aa^\top + bb^\top)g = a(a^\top g) + b(b^\top g)$.

This leads to a two-loop recursion implementation for computing $H_k \nabla f(x_k)$, stated in Algorithm 1.

Algorithm 1 L-BFGS two-loop recursion
set
$$q = \nabla f(x_k)$$
 want to compute $H_k \cdot \nabla f(x_k)$
for $i = k - 1, k - 2, ..., k = m$ do:
 $\alpha_i \leftarrow \rho_i s_i^\top q$
 $q \leftarrow q - \alpha_i y_i$ // RHS= $q - \rho_i s_i^\top q y_i = \underbrace{\left(I - \rho_i y_i s_i^\top\right)}_{V_i} q$
 $r = H_k^0 q$
for $i = k - m$ to $k - 1$:
 $\beta \leftarrow \rho_i y_i^\top r$
 $r \leftarrow r + s_i(\alpha_i - \beta)$ // RHS = $r + \rho_i \alpha_i - \rho_i y_i^\top r s_i = \underbrace{\left(I - \rho_i s_i y_i^\top\right)}_{V_i^\top} r + \rho_i \alpha_i$
return r // which equals $H_k \nabla f(x_k)$

(Exercise) The total number of multiplications is at most $4md + nnz(H_k^0) = O(md)$. In practice:

- We often take *m* to be a small constant independent of *d*, e.g., $3 \le m \le 20$.
- A popular choice for H_k^0 is $H_k^0 = \gamma_k I$, where $\gamma_k = \frac{s_{k-1}^\top y_{k-1}}{y_{k-1}^\top y_{k-1}}$. This choice appears to be quite effective in practice. (Optional) $\frac{1}{\gamma_k}$ is an approximation of $\frac{z_k^\top \nabla^2 f(x_k) z_k}{\|z_k\|^2}$, which is the size of the true Hessian along the direction $z_k \approx (\nabla^2 f(x_k))^{1/2} s_k$; see Section 6.1 in Nocedal-Wright.

The complete L-BFGS algorithm is given in Algorithm 2. As discussed in Lecture 21, it is important that α_k satisfies both the sufficient decrease and curvature conditions in Wolfe.

Algorithm 2 L-BFGS

input: $x_0 \in \mathbb{R}^d$ (initial point), m > 0 (memory budget), $\epsilon > 0$ (convergence criterion) $k \leftarrow 0$

repeat:

- Choose H_k^0
- $p_k \leftarrow -H_k \nabla f(x_k)$, where $H_k \nabla f(x_k)$ is computed using Algorithm 1
- $x_{k+1} \leftarrow x_k + \alpha_k p_k$, where α_k satisfies Wolfe Conditions
- **if** *k* > *m*:
 - discard $\{s_{k-m}, y_{k-m}\}$ from storage
- Compute and store $s_k \leftarrow x_{k+1} x_k$ and $y_k = \nabla f(x_{k+1}) \nabla f(x_k)$
- $k \leftarrow k+1$

until $\|\nabla f(x_k\| \leq \epsilon$

Some numerical results taken from Nocedal-Wright:

Table 7.1 presents results illustrating the behavior of Algorithm 7.5 for various levels of memory *m*. It gives the number of function and gradient evaluations (nfg) and the total CPU time. The test problems are taken from the CUTE collection [35], the number of variables is indicated by *n*, and the termination criterion $\|\nabla f_k\| \leq 10^{-5}$ is used. The table shows that the algorithm tends to be less robust when *m* is small. As the amount of storage increases, the number of function evaluations tends to decrease; but since the cost of each iteration increases with the amount of storage, the best CPU time is often obtained for small values of *m*. Clearly, the optimal choice of *m* is problem dependent.

		L-BFGS		L-BFGS		L-BFGS		L-BFGS	
Problem	n	m = 3		m = 5		m = 17		m = 29	
		nfg	time	nfg	time	nfg	time	nfg	time
DIXMAANL	1500	146	16.5	134	17.4	120	28.2	125	44.4
EIGENALS	110	821	21.5	569	15.7	363	16.2	168	12.5
FREUROTH	1000	>999		>999	—	69	8.1	38	6.3
TRIDIA	1000	876	46.6	611	41.4	531	84.6	462	127.1

Table 7.1Performance of Algorithm 7.5.

3 Relationship with nonlinear conjugate gradient methods

In Lecture 13 we mentioned several ways of generalizing CG to non-quadratic functions (a.k.a. nonlienar CG), including Dai-Yuan, Fletcher-Rieves and Polak-Ribiere. The last one has a variant called Hestenes-Stiefel, which uses the search direction

$$p_{k+1} = -\nabla f(x_{k+1}) + \frac{\nabla f(x_{k+1})^\top y_k}{y_k^\top p_k} p_k = -\underbrace{\left(I - \frac{s_k y_k^\top}{y_k^\top s_k}\right)}_{=:\hat{H}_{k+1}} \nabla f(x_{k+1}),$$
(2)

where we recall that $y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$ and $s_k = x_{k+1} - x_k$.

The matrix \hat{H}_{k+1} is neither symmetric nor p.d. If we try to symmetrize \hat{H}_{k+1} by taking $\hat{H}_{k+1}^{\top} \hat{H}_{k+1}$, we end up with a matrix that does not satisfy the secant equation and is singular.

A symmetric p.d. matrix that satisfies the secant equation is

$$H_{k+1} = \hat{H}_{k+1}\hat{H}_{k+1}^{\top} + \frac{s_k s_k^{\top}}{y_k^{\top} s_k}$$
$$= \left(I - \frac{s_k y_k^{\top}}{y_k^{\top} s_k}\right) I\left(I - \frac{y_k s_k^{\top}}{y_k^{\top} s_k}\right) + \frac{s_k s_k^{\top}}{y_k^{\top} s_k}$$
$$= \text{BFGS update (1) applied to } H_k = I$$

Therefore, computing H_{k+1} as above for the search direction $p_{k+1} = -H_{k+1}\nabla f(x_{k+1})$ can be viewed as "memoryless" BFGS, i.e., L-BFGS with m = 1 and $H_k^0 = I$.

Suppose we combine memoryless BFGS and exact line search:

$$\alpha_k = \operatorname*{argmin}_{\alpha \in \mathbb{R}} f(x_k + \alpha p_k).$$

For all *k* , the stepsize α_k satisfies

$$0 = \langle \nabla f(x_k + \alpha_k p_k), p_k \rangle = \left\langle \nabla f(x_{k+1}), \alpha_k^{-1} s_k \right\rangle,$$

hence $s_k^\top \nabla f(x_{k+1}) = 0$. It follows that

$$p_{k+1} = -H_{k+1}\nabla f(x_{k+1})$$

$$= -\left[\left(I - \frac{s_k y_k^{\top}}{y_k^{\top} s_k}\right)\left(I - \frac{y_k s_k^{\top}}{y_k^{\top} s_k}\right) + \frac{s_k s_k^{\top}}{y_k^{\top} s_k}\right]\nabla f(x_{k+1})$$

$$= -\nabla f(x_{k+1}) + \frac{y_k^{\top}\nabla f(x_{k+1})}{y_k^{\top} s_k}s_k \qquad s_k^{\top}\nabla f(x_{k+1}) = 0$$

$$= -\nabla f(x_{k+1}) + \frac{y_k^{\top}\nabla f(x_{k+1})}{y_k^{\top} p_k}p_k, \qquad s_k = \alpha_k p_k$$

which is the same as Hestenes-Stiefel CG update (2).