Lecture 23: Limited-Memory BFGS (L-BFGS)

Yudong Chen

1 Basic ideas

Newton and quasi-Newton methods enjoy fast convergence (small number of iterations), but for large-scale problems each iteration may be too costly.

For example, recall the quasi-Newton method

\[x_{k+1} = x_k - \alpha_k H_k \nabla f(x_k) \]

with BFGS update:

\[H_k = V_{k-1}^T V_{k-1} + \rho_k^{-1} s_{k-1} s_{k-1}^T, \]

where

\[\rho_k = \frac{1}{s_k^T y_k}, \quad V_k = I - \rho_k y_k s_k^T, \]

\[s_k = x_{k+1} - x_k, \quad y_k = \nabla f(x_{k+1}) - \nabla f(x_k), \]

and the stepsize \(\alpha_k \) satisfies WWC. The matrices \(B_k \) and \(H_k \) constructed by BFGS are often dense, even when the true Hessian is sparse. In general, BFGS requires \(\Theta(d^2) \) computation per iteration and \(\Theta(d^2) \) memory. For large \(d \), \(\Theta(d^2) \) may be too much.

Idea of L-BFGS: instead of storing the full matrix \(H_k \) (approximation of \(\nabla^2 f(x_k)^{-1} \)), construct and represent \(H_k \) implicitly using a small number of vectors \(\{s_i, y_i\} \) for the last few iterations.

Intuition: we do not expect the current Hessian to depend too much on “old” vectors \(s_i, y_i \) (old iterates \(x_i \) and their gradients.)

Tradeoff: we reduce memory and computation to \(O(d) \), but we may lose local superlinear convergence—we can only guarantee linear convergence in general.

2 L-BFGS

Recall and expand the BFGS update:

\[
H_k = V_{k-1}^T V_{k-1} + \rho_k^{-1} s_{k-1} s_{k-1}^T \\
= V_{k-1}^T V_{k-2} H_{k-2} V_{k-2} V_{k-1} + \rho_k^{-1} s_{k-2} s_{k-2}^T V_{k-1} + \rho_k^{-1} s_{k-1} s_{k-1}^T \\
= \left(V_{k-1}^T \cdots V_{k-m}^T \right) H_{k-m} \left(V_{k-m} V_{k-m+1} \cdots V_{k-1} \right) \\
+ \rho_k^{-1} \left(V_{k-1}^T \cdots V_{k-m+1}^T \right) s_{k-m} s_{k-m}^T \left(V_{k-m+1} \cdots V_{k-1} \right) \\
+ \rho_k^{-1} \left(V_{k-1}^T \cdots V_{k-m+2}^T \right) s_{k-m+1} s_{k-m+1}^T \left(V_{k-m+2} \cdots V_{k-1} \right) \\
+ \cdots \\
+ \rho_k^{-1} V_{k-m} V_{k-m+1} V_{k-m+2} \cdots V_{k-1} \\
+ \rho_k^{-1} s_{k-1} s_{k-1}^T.
\]
In L-BFGS, we replace H_{k-m} (a dense $d \times d$ matrix) with some sparse matrix H_0^0, e.g., a diagonal matrix. Thus, H_k can be constructed using the most recent $m \ll d$ pairs $\{\mathbf{s}_i, \mathbf{y}_i\}_{i=k-m}^{k-1}$. That is,

$$L-BFGS: \quad H_k = \left(V_{k-1}^T V_{k-2}^T \cdots V_{k-m}^T \right) H_0^0 \left(V_{k-m} V_{k-m+1} \cdots V_{k-1} \right) + \rho_{k-m} \left(V_{k-1}^T \cdots V_{k-m+1}^T \right) \mathbf{s}_{k-m} \mathbf{y}_{k-m} \left(V_{k-m+1} \cdots V_{k-1} \right) + \rho_{k-m+1} \left(V_{k-1}^T \cdots V_{k-m+2}^T \right) \mathbf{s}_{k-m+1} \mathbf{y}_{k-m+1} \left(V_{k-m+2} \cdots V_{k-1} \right) + \cdots + \rho_{k-1} \mathbf{s}_{k-1} \mathbf{y}_{k-1}.$$

In fact, we only need the d-dimensional vector $H_k \nabla f(x_k)$ to update $x_{k+1} = x_k - \alpha_k H_k \nabla f(x_k)$. Therefore, we do not even need to compute or store the matrix H_k explicitly. Instead, we only store the vectors $\{\mathbf{s}_i, \mathbf{y}_i\}_{i=k-m'}$ from which $H_k \nabla f(x_k)$ can be computed using only vector-vector multiplications, thanks to tricks like $(a a^T + b b^T)g = a(a^T g) + b(b^T g)$.

This leads to a two-loop recursion implementation for computing $H_k \nabla f(x_k)$, stated in Algorithm 1.

Algorithm 1 L-BFGS two-loop recursion

```plaintext
set $q = \nabla f(x_k)$ want to compute $H_k \cdot \nabla f(x_k)$
for $i = k-1, k-2, \ldots, k = m$ do:
    $\alpha_i \leftarrow \rho_i \mathbf{s}_i^T q$
    $q \leftarrow q - \alpha_i \mathbf{y}_i$ // RHS = $q - \rho_i \mathbf{s}_i^T \mathbf{y}_i = \left( I - \rho_i \mathbf{s}_i \mathbf{s}_i^T \right) q$
    $r = H_k^0 q$
for $i = k - m$ to $k - 1$:
    $\beta \leftarrow \rho_i \mathbf{y}_i^T r$
    $r \leftarrow r + \mathbf{s}_i (\alpha_i - \beta)$ // RHS = $r + \rho_i \mathbf{a}_i - \rho_i \mathbf{y}_i^T r s_i = \left( I - \rho_i \mathbf{s}_i \mathbf{s}_i^T \right) r + \rho_i \mathbf{a}_i$
return $r$ // which equals $H_k \nabla f(x_k)$
```

(Exercise) The total number of multiplications is at most $4md + \text{nnz}(H_0^0) = O(md)$.

In practice:

- We often take m to be a small constant independent of d, e.g., $3 \leq m \leq 20$.
- A popular choice for H_0^0 is $H_0^0 = \gamma_k I$, where $\gamma_k = \frac{s_{k-1}^T y_{k-1}}{y_{k-1}^T y_{k-1}}$. This choice appears to be quite effective in practice. (Optional) $\frac{1}{\gamma_k}$ is an approximation of $\frac{s_{k}^T \nabla^2 f(x_k) z_k}{\|z_k\|^2}$, which is the size of the true Hessian along the direction $z_k \approx \left(\nabla^2 f(x_k) \right)^{1/2} s_k$; see Section 6.1 in Nocedal-Wright.

The complete L-BFGS algorithm is given in Algorithm 2. As discussed in Lecture 21, it is important that α_k satisfies both the sufficient decrease and curvature conditions in Wolfe.
Algorithm 2 L-BFGS

input: $x_0 \in \mathbb{R}^d$ (initial point), $m > 0$ (memory budget), $\epsilon > 0$ (convergence criterion)

$k \leftarrow 0$

repeat:

- Choose H_0^k
- $p_k \leftarrow -H_k \nabla f(x_k)$, where $H_k \nabla f(x_k)$ is computed using Algorithm 1
- $x_{k+1} \leftarrow x_k + \alpha_k p_k$, where α_k satisfies Wolfe Conditions
- **if** $k > m$:
 - discard $\{s_{k-m}, y_{k-m}\}$ from storage
- Compute and store $s_k \leftarrow x_{k+1} - x_k$ and $y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$
- $k \leftarrow k + 1$

until $\|\nabla f(x_k)\| \leq \epsilon$

Some numerical results taken from Nocedal-Wright:

Table 7.1 presents results illustrating the behavior of Algorithm 7.5 for various levels of memory m. It gives the number of function and gradient evaluations (nfg) and the total CPU time. The test problems are taken from the CUTE collection [35], the number of variables is indicated by n, and the termination criterion $\|\nabla f_k\| \leq 10^{-5}$ is used. The table shows that the algorithm tends to be less robust when m is small. As the amount of storage increases, the number of function evaluations tends to decrease; but since the cost of each iteration increases with the amount of storage, the best CPU time is often obtained for small values of m. Clearly, the optimal choice of m is problem dependent.

<table>
<thead>
<tr>
<th>Problem</th>
<th>n</th>
<th>L-BFGS $m = 3$</th>
<th>L-BFGS $m = 5$</th>
<th>L-BFGS $m = 17$</th>
<th>L-BFGS $m = 29$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nfg</td>
<td>time</td>
<td>nfg</td>
<td>time</td>
<td>nfg</td>
</tr>
<tr>
<td>DIXMAANL</td>
<td>1500</td>
<td>146 16.5</td>
<td>134 17.4</td>
<td>120 28.2</td>
<td>125 44.4</td>
</tr>
<tr>
<td>EIGENALS</td>
<td>110</td>
<td>821 21.5</td>
<td>569 15.7</td>
<td>363 16.2</td>
<td>168 12.5</td>
</tr>
<tr>
<td>FREUROTH</td>
<td>1000</td>
<td>>999 —</td>
<td>>999 —</td>
<td>69 8.1</td>
<td>38 6.3</td>
</tr>
<tr>
<td>TRIDIA</td>
<td>1000</td>
<td>876 46.6</td>
<td>611 41.4</td>
<td>531 84.6</td>
<td>462 127.1</td>
</tr>
</tbody>
</table>

3 Relationship with nonlinear conjugate gradient methods

In Lecture 13 we mentioned several ways of generalizing CG to non-quadratic functions (a.k.a. non-linear CG), including Dai-Yuan, Fletcher-Rieves and Polak-Ribiere. The last one has a variant
called Hestenes-Stiefel, which uses the search direction

\[p_{k+1} = -\nabla f(x_{k+1}) + \frac{\nabla f(x_{k+1})^\top y_k}{y_k^\top p_k} p_k = -\left(I - \frac{s_k y_k^\top}{y_k^\top s_k} \right) \nabla f(x_{k+1}), \]

(2)

where we recall that \(y_k = \nabla f(x_{k+1}) - \nabla f(x_k) \) and \(s_k = x_{k+1} - x_k \).

The matrix \(\hat{H}_{k+1} \) is neither symmetric nor p.d. If we try to symmetrize \(\hat{H}_{k+1} \) by taking \(\hat{H}_{k+1}^\top \hat{H}_{k+1} \), we end up with a matrix that does not satisfy the secant equation and is singular.

A symmetric p.d. matrix that satisfies the secant equation is

\[H_{k+1} = \hat{H}_{k+1} \hat{H}_{k+1}^\top + \frac{s_k s_k^\top}{y_k^\top s_k} \]

\[= \left(I - \frac{s_k y_k^\top}{y_k^\top s_k} \right) \left(I - \frac{y_k s_k^\top}{y_k^\top s_k} \right) + \frac{s_k s_k^\top}{y_k^\top s_k} \]

\[= \text{BFGS update (1) applied to } H_k = I \]

Therefore, computing \(H_{k+1} \) as above for the search direction \(p_{k+1} = -H_{k+1} \nabla f(x_{k+1}) \) can be viewed as “memoryless” BFGS, i.e., L-BFGS with \(m = 1 \) and \(H_0^0 = I \).

Suppose we combine memoryless BFGS and exact line search:

\[\alpha_k = \arg\min_{\alpha \in \mathbb{R}} f(x_k + \alpha p_k). \]

For all \(k \), the stepsize \(\alpha_k \) satisfies

\[0 = \langle \nabla f(x_k + \alpha_k p_k), p_k \rangle = \langle \nabla f(x_{k+1}), \alpha_k^{-1} s_k \rangle, \]

hence \(s_k^\top \nabla f(x_{k+1}) = 0 \). It follows that

\[p_{k+1} = -H_{k+1} \nabla f(x_{k+1}) \]

\[= -\left[\left(I - \frac{s_k y_k^\top}{y_k^\top s_k} \right) \left(I - \frac{y_k s_k^\top}{y_k^\top s_k} \right) + \frac{s_k s_k^\top}{y_k^\top s_k} \right] \nabla f(x_{k+1}) \]

\[= -\nabla f(x_{k+1}) + \frac{y_k^\top \nabla f(x_{k+1}) s_k}{y_k^\top s_k} s_k \]

\[= -\nabla f(x_{k+1}) + \frac{y_k^\top \nabla f(x_{k+1})}{y_k^\top p_k} p_k, \]

\[s_k = \alpha_k p_k \]

which is the same as Hestenes-Stiefel CG update (2).