Lecture 23: Limited-Memory BFGS (L-BFGS)

Yudong Chen

1 Basic ideas

Newton and quasi-Newton methods enjoy fast convergence (small number of iterations), but for large-scale problems each iteration may be too costly.

For example, recall the quasi-Newton method $x_{k+1}=x_{k}-\alpha_{k} H_{k} \nabla f\left(x_{k}\right)$ with BFGS update:

$$
\begin{equation*}
H_{k}=V_{k-1}^{\top} H_{k-1} V_{k-1}+\rho_{k-1} s_{k-1} s_{k-1}^{\top}, \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \rho_{k}=\frac{1}{s_{k}^{\top} y_{k}}, \quad V_{k}=I-\rho_{k} y_{k} s_{k}^{\top}, \\
& s_{k}=x_{k+1}-x_{k}, \quad y_{k}=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right),
\end{aligned}
$$

and the stepsize α_{k} satisfies WWC. The matrices B_{k} and H_{k} constructed by BFGS are often dense, even when the true Hessian is sparse. In general, BFGS requires $\Theta\left(d^{2}\right)$ computation per iteration and $\Theta\left(d^{2}\right)$ memory. For large $d, \Theta\left(d^{2}\right)$ may be too much.

Idea of L-BFGS: instead of storing the full matrix H_{k} (approximation of $\nabla^{2} f\left(x_{k}\right)^{-1}$), construct and represent H_{k} implicitly using a small number of vectors $\left\{s_{i}, y_{i}\right\}$ for the last few iterations.

Intuition: we do not expect the current Hessian to depend too much on "old" vectors s_{i}, y_{i} (old iterates x_{i} and their gradients.)

Tradeoff: we reduce memory and computation to $O(d)$, but we may lose local superlinear convergence-we can only guarantee linear convergence in general.

2 L-BFGS

Recall and expand the BFGS update:

$$
\text { BFGS: } \quad \begin{aligned}
H_{k}= & V_{k-1}^{\top} H_{k-1} V_{k-1}+\rho_{k-1} s_{k-1} s_{k-1}^{\top} \\
= & V_{k-1}^{\top} V_{k-2}^{\top} H_{k-2} V_{k-2} V_{k-1}+\rho_{k-2} V_{k-2} s_{k-2} s_{k-2}^{\top} V_{k-1}+\rho_{k-1} s_{k-1} s_{k-1}^{\top} \\
= & \left(V_{k-1}^{\top} V_{k-2}^{\top} \cdots V_{k-m}^{\top}\right) H_{k-m}\left(V_{k-m} V_{k-m+1} \cdots V_{k-1}\right) \\
& +\rho_{k-m}\left(V_{k-1}^{\top} \cdots V_{k-m+1}^{\top}\right) s_{k-m} s_{k-m}^{\top}\left(V_{k-m+1} \cdots V_{k-1}\right) \\
& +\rho_{k-m+1}\left(V_{k-1}^{\top} \cdots V_{k-m+2}^{\top}\right) s_{k-m+1} s_{k-m+1}^{\top}\left(V_{k-m+2} \cdots V_{k-1}\right) \\
& +\cdots \\
& +\rho_{k-2} V_{k-1}^{\top} s_{k-2} s_{k-2}^{\top} V_{k-1} \\
& +\rho_{k-1} s_{k-1} s_{k-1}^{\top} .
\end{aligned}
$$

In L-BFGS, we replace H_{k-m} (a dense $d \times d$ matrix) with some sparse matrix H_{k}^{0}, e.g., a diagonal matrix. Thus, H_{k} can be constructed using the most recent $m \ll d$ pairs $\left\{s_{i}, y_{i}\right\}_{i=k-m}^{k-1}$. That is,

$$
\text { L-BFGS: } \quad \begin{aligned}
H_{k}= & \left(V_{k-1}^{\top} V_{k-2}^{\top} \cdots V_{k-m}^{\top}\right) H_{k}^{0}\left(V_{k-m} V_{k-m+1} \cdots V_{k-1}\right) \\
& +\rho_{k-m}\left(V_{k-1}^{\top} \cdots V_{k-m+1}^{\top}\right) s_{k-m} s_{k-m}^{\top}\left(V_{k-m+1} \cdots V_{k-1}\right) \\
& +\rho_{k-m+1}\left(V_{k-1}^{\top} \cdots V_{k-m+2}^{\top}\right) s_{k-m+1} s_{k-m+1}^{\top}\left(V_{k-m+2} \cdots V_{k-1}\right) \\
& +\cdots \\
& +\rho_{k-1} s_{k-1} s_{k-1}^{\top} .
\end{aligned}
$$

In fact, we only need the d-dimensional vector $H_{k} \nabla f\left(x_{k}\right)$ to update $x_{k+1}=x_{k}-\alpha_{k} H_{k} \nabla f\left(x_{k}\right)$. Therefore, we do not even need to compute or store the matrix H_{k} explicitly. Instead, we only store the vectors $\left\{s_{i}, y_{i}\right\}_{i=k-m^{\prime}}^{k-1}$, from which $H_{k} \nabla f\left(x_{k}\right)$ can be computed using only vector-vector multiplications, thanks to tricks like $\left(a a^{\top}+b b^{\top}\right) g=a\left(a^{\top} g\right)+b\left(b^{\top} g\right)$.

This leads to a two-loop recursion implementation for computing $H_{k} \nabla f\left(x_{k}\right)$, stated in Algorithm 1.

```
Algorithm 1 L-BFGS two-loop recursion
set \(q=\nabla f\left(x_{k}\right)\) want to compute \(H_{k} \cdot \nabla f\left(x_{k}\right)\)
for \(i=k-1, k-2, \ldots, k=m\) do:
    \(\alpha_{i} \leftarrow \rho_{i} s_{i}^{\top} q\)
    \(q \leftarrow q-\alpha_{i} y_{i}\)
        \(/ /\) RHS \(=q-\rho_{i} s_{i}^{\top} q y_{i}=\underbrace{\left(I-\rho_{i} y_{i} s_{i}^{\top}\right)}_{V_{i}} q\)
\(r=H_{k}^{0} q\)
for \(i=k-m\) to \(k-1\) :
    \(\beta \leftarrow \rho_{i} y_{i}^{\top} r\)
    \(r \leftarrow r+s_{i}\left(\alpha_{i}-\beta\right)\)
        \(/ /\) RHS \(=r+\rho_{i} \alpha_{i}-\rho_{i} y_{i}^{\top} r s_{i}=\underbrace{\left(I-\rho_{i} s_{i} y_{i}^{\top}\right)}_{V_{i}^{\top}} r+\rho_{i} \alpha_{i}\)
return \(r \quad / /\) which equals \(H_{k} \nabla f\left(x_{k}\right)\)
```

(Exercise) The total number of multiplications is at most $4 m d+n n z\left(H_{k}^{0}\right)=O(m d)$.
In practice:

- We often take m to be a small constant independent of d, e.g., $3 \leq m \leq 20$.
- A popular choice for H_{k}^{0} is $H_{k}^{0}=\gamma_{k} I$, where $\gamma_{k}=\frac{s_{k-1}^{\top} y_{k-1}}{y_{k-1}^{\top} y_{k-1}}$. This choice appears to be quite effective in practice. (Optional) $\frac{1}{\gamma_{k}}$ is an approximation of $\frac{z_{k}^{\top} \nabla^{2} f\left(x_{k}\right) z_{k}}{\left\|z_{k}\right\|^{2}}$, which is the size of the true Hessian along the direction $z_{k} \approx\left(\nabla^{2} f\left(x_{k}\right)\right)^{1 / 2}{ }_{s_{k}}$; see Section 6.1 in Nocedal-Wright.

The complete L-BFGS algorithm is given in Algorithm 2. As discussed in Lecture 21, it is important that α_{k} satisfies both the sufficient decrease and curvature conditions in Wolfe.

```
Algorithm 2 L-BFGS
input: \(x_{0} \in \mathbb{R}^{d}\) (initial point), \(m>0\) (memory budget), \(\epsilon>0\) (convergence criterion)
\(k \leftarrow 0\)
repeat:
```

- Choose H_{k}^{0}
- $p_{k} \leftarrow-H_{k} \nabla f\left(x_{k}\right)$, where $H_{k} \nabla f\left(x_{k}\right)$ is computed using Algorithm 1
- $x_{k+1} \leftarrow x_{k}+\alpha_{k} p_{k}$, where α_{k} satisfies Wolfe Conditions
- if $k>m$:
- discard $\left\{s_{k-m}, y_{k-m}\right\}$ from storage
- Compute and store $s_{k} \leftarrow x_{k+1}-x_{k}$ and $y_{k}=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)$
- $k \leftarrow k+1$
until $\| \nabla f\left(x_{k} \| \leq \epsilon\right.$

Some numerical results taken from Nocedal-Wright:
Table 7.1 presents results illustrating the behavior of Algorithm 7.5 for various levels of memory m. It gives the number of function and gradient evaluations (nfg) and the total CPU time. The test problems are taken from the CUTE collection [35], the number of variables is indicated by n, and the termination criterion $\left\|\nabla f_{k}\right\| \leq 10^{-5}$ is used. The table shows that the algorithm tends to be less robust when m is small. As the amount of storage increases, the number of function evaluations tends to decrease; but since the cost of each iteration increases with the amount of storage, the best CPU time is often obtained for small values of m. Clearly, the optimal choice of m is problem dependent.

Table 7.1 Performance of Algorithm 7.5.

		L-BFGS		L-BFGS		L-BFGS		L-BFGS	
Problem	n	$m=3$		$m=5$		$m=17$		$m=29$	
		nfg		time	nfg	time	nfg	time	nfg
time									
DIXMAANL	1500	146	16.5	134	17.4	120	28.2	125	44.4
EIGENALS	110	821	21.5	569	15.7	363	16.2	168	12.5
FREUROTH	1000	>999	-	>999	-	69	8.1	38	6.3
TRIDIA	1000	876	46.6	611	41.4	531	84.6	462	127.1

3 Relationship with nonlinear conjugate gradient methods

In Lecture 13 we mentioned several ways of generalizing CG to non-quadratic functions (a.k.a. nonlienar CG), including Dai-Yuan, Fletcher-Rieves and Polak-Ribiere. The last one has a variant
called Hestenes-Stiefel, which uses the search direction

$$
\begin{equation*}
p_{k+1}=-\nabla f\left(x_{k+1}\right)+\frac{\nabla f\left(x_{k+1}\right)^{\top} y_{k}}{y_{k}^{\top} p_{k}} p_{k}=-\underbrace{\left(I-\frac{s_{k} y_{k}^{\top}}{y_{k}^{\top} s_{k}}\right)}_{=: \hat{H}_{k+1}} \nabla f\left(x_{k+1}\right) \tag{2}
\end{equation*}
$$

where we recall that $y_{k}=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)$ and $s_{k}=x_{k+1}-x_{k}$.
The matrix \hat{H}_{k+1} is neither symmetric nor p.d. If we try to symmetrize \hat{H}_{k+1} by taking $\hat{H}_{k+1}^{\top} \hat{H}_{k+1}$, we end up with a matrix that does not satisfy the secant equation and is singular.

A symmetric p.d. matrix that satisfies the secant equation is

$$
\begin{aligned}
H_{k+1} & =\hat{H}_{k+1} \hat{H}_{k+1}^{\top}+\frac{s_{k} s_{k}^{\top}}{y_{k}^{\top} s_{k}} \\
& =\left(I-\frac{s_{k} y_{k}^{\top}}{y_{k}^{\top} s_{k}}\right) I\left(I-\frac{y_{k} s_{k}^{\top}}{y_{k}^{\top} s_{k}}\right)+\frac{s_{k} s_{k}^{\top}}{y_{k}^{\top} s_{k}} \\
& =\text { BFGS update (1) applied to } H_{k}=I
\end{aligned}
$$

Therefore, computing H_{k+1} as above for the search direction $p_{k+1}=-H_{k+1} \nabla f\left(x_{k+1}\right)$ can be viewed as "memoryless" BFGS, i.e., L-BFGS with $m=1$ and $H_{k}^{0}=I$.

Suppose we combine memoryless BFGS and exact line search:

$$
\alpha_{k}=\underset{\alpha \in \mathbb{R}}{\operatorname{argmin}} f\left(x_{k}+\alpha p_{k}\right) .
$$

For all k, the stepsize α_{k} satisfies

$$
0=\left\langle\nabla f\left(x_{k}+\alpha_{k} p_{k}\right), p_{k}\right\rangle=\left\langle\nabla f\left(x_{k+1}\right), \alpha_{k}^{-1} s_{k}\right\rangle,
$$

hence $s_{k}^{\top} \nabla f\left(x_{k+1}\right)=0$. It follows that

$$
\begin{array}{rlr}
p_{k+1} & =-H_{k+1} \nabla f\left(x_{k+1}\right) & \\
& =-\left[\left(I-\frac{s_{k} y_{k}^{\top}}{y_{k}^{\top} s_{k}}\right)\left(I-\frac{y_{k} s_{k}^{\top}}{y_{k}^{\top} s_{k}}\right)+\frac{s_{k} s_{k}^{\top}}{y_{k}^{\top} s_{k}}\right] \nabla f\left(x_{k+1}\right) & \\
& =-\nabla f\left(x_{k+1}\right)+\frac{y_{k}^{\top} \nabla f\left(x_{k+1}\right)}{y_{k}^{\top} s_{k}} s_{k} & \\
& =-\nabla f\left(x_{k+}\right. & s_{k}=\alpha_{k} p_{k}
\end{array}
$$

which is the same as Hestenes-Stiefel CG update (2).

