UW-Madison CS/ISyE/Math/Stat 726 Spring 2023

Lecture 23: Limited-Memory BFGS (L-BFGS)

Yudong Chen

1 Basicideas

Newton and quasi-Newton methods enjoy fast convergence (small number of iterations), but for
large-scale problems each iteration may be too costly.
For example, recall the quasi-Newton method xj,1 = x; — axHV f (x;) with BFGS update:

Hy = Vi 1 Hi_1 Vet + Pr—18k-18¢ 1, (1)
where
Pk = L, Vi =1 — pkyisy
S Yk

Sk = Xkp1 — Xk Yk = V(%) — V(x),

and the stepsize «j satisfies WWC. The matrices By and Hj constructed by BFGS are often dense,
even when the true Hessian is sparse. In general, BEGS requires @ (d?) computation per iteration
and @(d?) memory. For large d, ©®(d?) may be too much.

Idea of L-BFGS: instead of storing the full matrix Hy (approximation of V2 f(x;) 1), construct
and represent Hy implicitly using a small number of vectors {s;, y;} for the last few iterations.

Intuition: we do not expect the current Hessian to depend too much on “old” vectors s;, y; (old
iterates x; and their gradients.)

Tradeoff: we reduce memory and computation to O(d), but we may lose local superlinear
convergence—we can only guarantee linear convergence in general.

2 L-BFGS

Recall and expand the BFGS update:
BFGS: Hy =V, {Hi_1Vi_1 + 0x—15c-151_1
=V, Vi He o Vi aVied + pr—a Vi aSk—25) o Vi1 + Pr—15k-15¢_1
= (VkT—lva—z e VkT—m) Hy o (Ve Vi—ma1 -+ V1)
+ Ok—m <Vk—|;l e Vk—imjtl) Sk-mSt—m (Viems1 -+ - Vi)
+ Ok—m+1 (VkT_1 a VkT_m+2) Sk-m+15¢-m1 (Viemsz -+ Vie1)
+ k-2 Vi 18k-28¢_» Vi1

-
+ Ok—18k—1Sk_1-

UW-Madison CS/ISyE/Math/Stat 726 Spring 2023

In L-BFGS, we replace Hy_, (a dense d x d matrix) with some sparse matrix H,?, e.g., a diagonal

matrix. Thus, Hy can be constructed using the most recent m < d pairs {s;,]/i}i‘(:_klfm- That is,

L-BEGS: H, = (v,j_lv,j_z . v,j_m) H? (VieViemat -+ Viet)
+ Ok—m (Vk—il T thmntl) Skfmsllm (Viems1 -+ V1)

+ Pk—m+1 (szl---Vi[m+2>Sk,m+4S;;m+1(V%,m+2---vﬁ,1)
4+ ...
+ Ok-15k-15¢_1-

In fact, we only need the d-dimensional vector H;V f(x;) to update x;11 = xx — a Hy 'V f (xy).
Therefore, we do not even need to compute or store the matrix Hj explicitly. Instead, we only

store the vectors {si,yi}f:_kl_m, from which HV f(xx) can be computed using only vector-vector
multiplications, thanks to tricks like (aa" +bb")g =a(a'g) +b(b"g).

This leads to a two-loop recursion implementation for computing HyV f(xy), stated in Algo-
rithm 1.

Algorithm 1 L-BFGS two-loop recursion

set g = V f(x;) want to compute Hy - V f(x)
fori=k—1,k—2,...,k=mdo:

aj < pis q
70—y // RHS=q—p;s] qy; = (1-pwisi) q
T/

r= H,?q
fori=k—-mtok—1:

B piyi'r

r+r+si(a; —B) // RHS = r+ pja; — piy rs; = (1 - pisin T+ pi;

—_——
VI_T

return r // which equals H;V f(xy)

(Exercise) The total number of multiplications is at most 4md + nnz(HY) = O (md) .
In practice:

¢ We often take m to be a small constant independent of d, e.g., 3 < m < 20.

.

Sp_1Yk—1
T

Yie—1Yk—1

Ty72
% , which is the size of the
k

* A popular choice for Hy is H) = I, where 7 = . This choice appears to be quite
effective in practice. (Optional) % is an approximation of

true Hessian along the direction z; ~ (V2f (xk))1/2 sk; see Section 6.1 in Nocedal-Wright.

The complete L-BFGS algorithm is given in Algorithm 2. As discussed in Lecture 21, it is important
that a; satisfies both the sufficient decrease and curvature conditions in Wolfe.

UW-Madison CS/ISyE/Math/Stat 726 Spring 2023

Algorithm 2 L-BFGS

input: xo € R? (initial point), m > 0 (memory budget), € > 0 (convergence criterion)
k<0
repeat:

e Choose HY

pr < —HiV f(x;), where HiV f(xx) is computed using Algorithm 1

® X1 < Xi + agpr, where oy satisfies Wolfe Conditions

if k > m:

— discard {sx_, Yx—n } from storage
e Compute and store s; < X1 — Xg and yx = V f(x,11) — Vf(xx)
o k+k+1

until |V f (x| <e

Some numerical results taken from Nocedal-Wright:

Table 7.1 presents results illustrating the behavior of Algorithm 7.5 for various levels
of memory m. It gives the number of function and gradient evaluations (nfg) and the total
CPU time. The test problems are taken from the CUTE collection [35], the number of
variables is indicated by n, and the termination criterion ||V f|| < 107> is used. The table
shows that the algorithm tends to be less robust when m is small. As the amount of storage
increases, the number of function evaluations tends to decrease; but since the cost of each
iteration increases with the amount of storage, the best CPU time is often obtained for small
values of m. Clearly, the optimal choice of m is problem dependent.

Table 7.1 Performance of Algorithm 7.5.

L-BEGS L-BFGS L-BFGS L-BFGS
Problem n m=3 m=>5 m =17 m=29
nfg time nfg time | nfg time | nfg time

DIXMAANL 1500 146 16.5 134 174 | 120 28.2 | 125 44.4
FIGENALS 110 821 21.5 569 15.7 | 363 16.2 | 168 12.5
FREUROTH 1000 | =999 — | =999 — 69 8.1 38 6.3
TRIDIA 1000 876 46.6 611 414 | 531 84.6 | 462 127.1

3 Relationship with nonlinear conjugate gradient methods

In Lecture 13 we mentioned several ways of generalizing CG to non-quadratic functions (a.k.a. non-
lienar CG), including Dai-Yuan, Fletcher-Rieves and Polak-Ribiere. The last one has a variant

UW-Madison CS/ISyE/Math/Stat 726 Spring 2023

called Hestenes-Stiefel, which uses the search direction

Vi(x T Sl
Prr1 = =V f(Xpey1) + Mpk = - (I - kTyk> Vf(xks1), 2)
Yi P Y Sk
—_———
::Hk+1

where we recall that yy = V f(xx11) — Vf(xx) and sp = X511 — X4

The matrix Hk+1 is neither symmetric nor p.d. If we try to symmetrize Hk+1 by taking A ,j +1Hk+1/
we end up with a matrix that does not satisfy the secant equation and is singular.

A symmetric p.d. matrix that satisfies the secant equation is

kS,

v T k

Hiy1 = Hy1Hp + ——
Y Sk

(S (s e
Yy Sk Yy Sk Yi Sk
= BFGS update (1) applied to Hy = I

Therefore, computing Hy, ;1 as above for the search direction pyy1 = —Hi1Vf(xky1) can be
viewed as “memoryless” BFGS, i.e., L-BFGS with m = 1 and H,? = 1.
Suppose we combine memoryless BFGS and exact line search:

ap = argmin f(xg + apy).
aeR

For all k , the stepsize «j satisfies

0= (VF(xe+axpe), pe) = (VF(xenn) o si)
hence SkT V f(xk+1) = 0. It follows that

Pr+1 = —Hip 1 Vi (Xk41)

T T T
SkYk YkSyg SkSk
=—|(1- I- + Vf(x
[(]/kTsk) (]/kTSk>]/kTSk] f(k+1)

IV F(x
=V f () + P L)
Yy Sk

n y,;er(ka)
Yy Pk

S;Vf(xkﬂ) =0
= —Vf(xks1) Pk, Sk = AkPk

which is the same as Hestenes-Stiefel CG update (2).

	Basic ideas
	L-BFGS
	Relationship with nonlinear conjugate gradient methods

