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Lecture 24: Trust-Region Methods

Yudong Chen

So far, we have been looking at methods of the form

xk+1 = xk − αk B−1
k ∇ f (xk)︸ ︷︷ ︸

−pk

,

where Bk ≻ 0. Examples:

• Bk = I: steepest descent;

• Bk = ∇2 f (xk): (damped) Newton’s method

• Bk approximates ∇2 f (xk): quasi-Newton method.

In all these methods, we first determine the search direction pk, then choose the stepsize αk.
In Trust region (TR) methods, we first determine the size of the step, then the direction.

1 Trust region method

We want to compute the step pk that gives the next iterate xk+1 = xk + pk.
Let Bk ∈ Rd×d be given; typically, Bk equals ∇2 f (xk) or an approximation thereof obtained by

Quasi-Newton (say SR1). Consider the following a quadratic approximate model of f around xk:

mk(p) := f (xk) + ⟨∇ f (xk), p⟩+ 1
2

p⊤Bk p.

Basic idea of TR: to compute pk, we minimize mk(p) over a region (a ball centered at xk) within
which we trust that mk is a good approximation of f .

Remark 1. We do not require Bk ≻ 0. In particular, we can use an indefinite ∇2 f (xk) without
modification.

Formally, the (exact) TR direction is given by

pk := argmin
p∈Rd :∥p∥≤∆k

mk(p),

where ∆k is the radius of the trust region.

Example 1. Suppose f (x) = x2
1 − x2

2, which is a nonconvex quadratic. The quadratic model is the
function itself: mk(p) = f (xk + p). If xk = 0, then ∇ f (xk) = 0, so gradient descent (GD) and
Newton’s method will stay at 0 (a stationary point). TR method will take the step

pk = argmin
p:∥p∥≤∆k

mk(p)

= argmin
p:p2

1+p2
2≤∆2

k

{
(0 + p1)

2 − (0 + p2)
2} = (0, ∆k) or (0,−∆k).
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For more general functions, see the illustration below from Nocedal-Wright:

To completely specify the TR method, we need to decide:

1. how to choose the radius ∆k,

2. how and to what accuracy to solve the minimization problem minp∈Rd :∥p∥≤∆k
mk(p).

2 Choosing the radius ∆k

Define

ρk :=

actual reduction︷ ︸︸ ︷
f (xk)− f (xk + pk)

mk(0)− mk(pk)︸ ︷︷ ︸
predicted reduction,≥0

.

The ratio ρk tells us whether we are making progress, and if so, how much.
General idea:

1. If ρk ≈ 1, then f and mk agree well for within the trust region ∥p∥ ≤ ∆k. We can try increasing
∆k in next iteration.

2. If ρk < 0, then f has increased. We should reject the step.

3. If ρk is small or negative, we should consider decreasing ∆k (shrink the trust region).

The following algorithm describes the process.
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Algorithm 1 Trust Region

Input: ∆̂ > 0 (largest radius), ∆0 ∈ (0, ∆̂) (initial radius), η ∈ [0, 1/4) (acceptance threshold)
for k = 0, 1, 2, . . .

pk = argminp:∥p∥≤∆k
mk(p) (or approximate minimizer)

ρk =
f (xk)− f (xk+pk)
mk(0)−mk(pk)

if ρk <
1
4 : \\ insufficient progress

∆k+1 =
1
4

∆k \\ reduce radius

else:
if ρk >

3
4 and ∥pk∥ = ∆k: \\ sufficient progress, active trust region

∆k+1 = min
{

2∆k, ∆̂
}

\\ increase radius

else: \\ sufficient progress, inactive trust region

∆k+1 = ∆ \\ keep radius

if ρk > η: \\ sufficient progress

xk+1 = xk + pk \\ accept step

else: \\ insufficient progress

xk+1 = xk \\ reject step

end for

3 Exact minimization of mk

In each iteration of Algorithm 1, we need to solve the TR sub-problem

min
p:∥p∥≤∆k

mk(p) := fk + g⊤k p +
1
2

p⊤Bk p, (Pmk )

where we introduce the shorthands fk := f (xk) and gk := ∇ f (xk).
The theorem below characterizes the exact minimizer p∗k = argminp:∥p∥≤∆k

mk(p).

Theorem 1 (Characterizing the solution to (Pmk )). The vector p∗ ∈ Rd is a global solution to the problem
(Pmk ) if and only if p∗ is feasible (∥p∗∥ ≤ ∆k) and there exists λ ≥ 0 such that the following condition
holds:

1. (Bk + λI)p∗ = −gk,

2. λ(∆k − ∥p∗∥) = 0 (complementary slackness),

3. Bk + λI ≽ 0.

The proof of Theorem 1 makes use of the theory of constrained optimization and Lagrangian
multipliers, which we will not delve into.
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Exercise 1. Prove the necessity of part 1 above using the first-order optimality condition (Lecture
14, Theorem 1).

Some observations about Theorem 1:

• If ∥p∗∥ < ∆k, then the constraint is inactive/irrelevant. In this case, part 2 implies λ = 0,
part 1 implies Bk p∗ = −gk, and part 3 implies Bk ≽ 0. See p∗3 in the figure below.

• In the other case where ∥p∗∥ = ∆k, then λ > 0. From part 1:

λp∗ = −Bk p∗ − gk = −∇mk(p∗),

hence p∗ is parallel to −∇mk(p∗) and thus normal to contours of mk; equivalently, −∇mk(p∗) ∈
NX (p∗), where X = {p : ∥p∥ ≤ ∆k}. See p∗1 and p∗2 in the figure below.

To find the exact minimizer p∗k , one may use an iterative method to search for the λ that satisfies
the conditions in Theorem 1.

4 Approximate methods for minimizing mk

Solving the TR subproblem (Pmk ) exactly is unnecessary. After all, mk is only a local approximation
of f .

4.1 Algorithms based on the Cauchy point

The Cauchy point pC
k is defined by the following procedure.
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Algorithm 2 Cauchy Point Calculation
Compute

pS
k = argmin

p:∥p∥≤∆k

{
fk + g⊤k p

}
,

τk = argmin
τ≥0:∥τpS

k∥≤∆k

mk(τpS
k).

Return pC
k = τk pS

k

Note that pS
k is the minimizer of the linear model fk + g⊤k p within the trust region; that is, pS

k
solves the linear version of the TR subproblem (Pmk ). The scalar τk is obtained by minimizing the
quadratic model mk along the direction of pS

k .

The Cauchy point can be easily computed. First observe that

pS
k = − ∆k

∥gk∥
gk.

Hence

mk(τpS
k) = fk + τ

〈
gk,− ∆k

∥gk∥
gk

〉
+

τ2

2

(
∆k

∥gk∥
gk

)⊤
Bk

(
∆k

∥gk∥
gk

)
= fk −τ∆k ∥gk∥︸ ︷︷ ︸

≤0

+
τ2

2
∆2

k

∥gk∥2 g⊤k Bkgk.

The RHS is a one-dimensional quadratic function of τ. Since
∥∥pS

k

∥∥ = ∆k, the trust-region constraint∥∥τpS
k

∥∥ ≤ ∆k is equivalent to τ ≤ 1.

• Case 1: g⊤k Bkgk ≤ 0. Then mk(τpS
k) is decreasing in τ, so the minimizer is on the boundary

of the trust region, that is, τk =
∆k

∥pS
k∥

= 1.

• Case 2: g⊤k Bkgk > 0. Then mk(τpS
k) is a convex quadratic in τ, hence τk is either the uncon-

strained minimizer of mk
(
τpS

k

)
, or 1 (on the boundary), whichever is smaller.
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Combining Case 1 + Case 2, we conclude that

τk =

1 g⊤k Bkgk ≤ 0,

min
{

1, ∥gk∥3

∆k g⊤k Bk gk

}
, g⊤k Bkgk > 0.

The Cauchy point pC
k can be used as a benchmark for an approximate solution pk to the TR

subproblem (Pmk ). As we will show later, for a TR method to converge globally, it is sufficient if pk
reduces mk by at least some constant times the decrease from the Cauchy point, i.e.,

mk(0)− mk(pk) ≤ c ·
(

mk(0)− mk(pC
k )
)

, where c > 0 is a constant.

Note that the RHS is roughly the progress made by gradient descent.

4.2 Improving the Cauchy point

If we simply using the Cauchy point, pk = pC
k , then the TR method will move in the direction

−∇ f (xk) and hence converge no faster than gradient descent.
The Cauchy point only uses the matrix Bk to determine the length of the step but not the

direction. To achieve faster convergence, we need to make more substantial use of Bk.

4.2.1 The dogleg method

The Dogleg method is used only when Bk ≻ 0.
Intuition: consider two extremes.

• If ∆k is small, then ∆2
k ≪ ∆k. Hence for ∥p∥ ≤ ∆k, the quadratic model is approximately

linear: mk(p) ≈ fk + g⊤k p. In this case, it is approximately optimal to use the Cauchy point,
i.e., p∗k ≈ pC

k .

• If ∆k is large, then the constraint ∥pk∥ ≤ ∆k becomes irrelevant. In this case, p∗k approxi-
mately equals the unconstrained minimizer of mk, i.e., p∗k ≈ −B−1

k pk =: pB
k .

The dogleg method interpolates between these two extremes.
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