Lecture 24: Trust-Region Methods

Yudong Chen

So far, we have been looking at methods of the form

$$
x_{k+1}=x_{k}-\alpha_{k} \underbrace{B_{k}^{-1} \nabla f\left(x_{k}\right)}_{-p_{k}},
$$

where $B_{k} \succ 0$. Examples:

- $B_{k}=I$: steepest descent;
- $B_{k}=\nabla^{2} f\left(x_{k}\right)$: (damped) Newton's method
- B_{k} approximates $\nabla^{2} f\left(x_{k}\right)$: quasi-Newton method.

In all these methods, we first determine the search direction p_{k}, then choose the stepsize α_{k}.
In Trust region (TR) methods, we first determine the size of the step, then the direction.

1 Trust region method

We want to compute the step p_{k} that gives the next iterate $x_{k+1}=x_{k}+p_{k}$.
Let $B_{k} \in \mathbb{R}^{d \times d}$ be given; typically, B_{k} equals $\nabla^{2} f\left(x_{k}\right)$ or an approximation thereof obtained by Quasi-Newton (say SR1). Consider the following a quadratic approximate model of f around x_{k} :

$$
m_{k}(p):=f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), p\right\rangle+\frac{1}{2} p^{\top} B_{k} p .
$$

Basic idea of TR: to compute p_{k}, we minimize $m_{k}(p)$ over a region (a ball centered at x_{k}) within which we trust that m_{k} is a good approximation of f.
Remark 1. We do not require $B_{k} \succ 0$. In particular, we can use an indefinite $\nabla^{2} f\left(x_{k}\right)$ without modification.

Formally, the (exact) TR direction is given by

$$
p_{k}:=\underset{p \in \mathbb{R}^{d}:\|p\| \leq \Delta_{k}}{\operatorname{argmin}} m_{k}(p),
$$

where Δ_{k} is the radius of the trust region.
Example 1. Suppose $f(x)=x_{1}^{2}-x_{2}^{2}$, which is a nonconvex quadratic. The quadratic model is the function itself: $m_{k}(p)=f\left(x_{k}+p\right)$. If $x_{k}=0$, then $\nabla f\left(x_{k}\right)=0$, so gradient descent (GD) and Newton's method will stay at 0 (a stationary point). TR method will take the step

$$
\begin{aligned}
p_{k} & =\underset{p:\|p\| \leq \Delta_{k}}{\operatorname{argmin}} m_{k}(p) \\
& =\underset{p: p_{1}^{2}+p_{2}^{2} \leq \Delta_{k}^{2}}{\operatorname{argmin}}\left\{\left(0+p_{1}\right)^{2}-\left(0+p_{2}\right)^{2}\right\}=\left(0, \Delta_{k}\right) \text { or }\left(0,-\Delta_{k}\right) .
\end{aligned}
$$

For more general functions, see the illustration below from Nocedal-Wright:

To completely specify the TR method, we need to decide:

1. how to choose the radius Δ_{k},
2. how and to what accuracy to solve the minimization problem $\min _{p \in \mathbb{R}^{d}:\|p\| \leq \Delta_{k}} m_{k}(p)$.

2 Choosing the radius Δ_{k}

Define

$$
\rho_{k}:=\frac{\overbrace{\frac{f\left(x_{k}\right)-f\left(x_{k}+p_{k}\right)}{\text { actual reduction }}}^{\underbrace{m_{k}(0)-m_{k}\left(p_{k}\right)}_{\text {predicted reduction }, \geq 0}}}{\text {. }}
$$

The ratio ρ_{k} tells us whether we are making progress, and if so, how much.
General idea:

1. If $\rho_{k} \approx 1$, then f and m_{k} agree well for within the trust region $\|p\| \leq \Delta_{k}$. We can try increasing Δ_{k} in next iteration.
2. If $\rho_{k}<0$, then f has increased. We should reject the step.
3. If ρ_{k} is small or negative, we should consider decreasing Δ_{k} (shrink the trust region).

The following algorithm describes the process.

```
Algorithm 1 Trust Region
Input: \(\hat{\Delta}>0\) (largest radius), \(\Delta_{0} \in(0, \hat{\Delta})\) (initial radius), \(\eta \in[0,1 / 4)\) (acceptance threshold)
for \(k=0,1,2, \ldots\)
    \(p_{k}=\underset{p:\|p\| \leq \Delta_{k}}{\operatorname{argmin}} m_{k}(p)\) (or approximate minimizer)
    \(\rho_{k}=\frac{f\left(x_{k}\right)-f\left(x_{k}+p_{k}\right)}{m_{k}(0)-m_{k}\left(p_{k}\right)}\)
    if \(\rho_{k}<\frac{1}{4}: \quad \backslash \backslash\) insufficient progress
        \(\Delta_{k+1}=\frac{1}{4} \Delta_{k} \quad \backslash\) reduce radius
    else:
\[
\begin{aligned}
\text { if } \rho_{k}>\frac{3}{4} \text { and }\left\|p_{k}\right\|=\Delta_{k}: \quad \text { \\
sufficient progress, active trust region } \\
\Delta_{k+1}=\min \left\{2 \Delta_{k}, \hat{\Delta}\right\} \quad \text { increase radius }
\end{aligned}
\]
        else: \(\ \backslash\) sufficient progress, inactive trust region
\[
\Delta_{k+1}=\Delta \quad \backslash \backslash \text { keep radius }
\]
if \(\rho_{k}>\eta: \quad \backslash \backslash\) sufficient progress
\[
x_{k+1}=x_{k}+p_{k} \quad \backslash \backslash \text { accept step }
\]
else: \\ insufficient progress
\[
x_{k+1}=x_{k} \quad \text { \\ reject step }
\]
end for
```


3 Exact minimization of m_{k}

In each iteration of Algorithm 1, we need to solve the TR sub-problem

$$
\begin{equation*}
\min _{p:\|p\| \leq \Delta_{k}} m_{k}(p):=f_{k}+g_{k}^{\top} p+\frac{1}{2} p^{\top} B_{k} p, \tag{k}
\end{equation*}
$$

where we introduce the shorthands $f_{k}:=f\left(x_{k}\right)$ and $g_{k}:=\nabla f\left(x_{k}\right)$.
The theorem below characterizes the exact minimizer $p_{k}^{*}=\operatorname{argmin}_{p:\|p\| \leq \Delta_{k}} m_{k}(p)$.
Theorem 1 (Characterizing the solution to $\left(P_{m_{k}}\right)$). The vector $p^{*} \in \mathbb{R}^{d}$ is a global solution to the problem $\left(P_{m_{k}}\right)$ if and only if p^{*} is feasible $\left(\left\|p^{*}\right\| \leq \Delta_{k}\right)$ and there exists $\lambda \geq 0$ such that the following condition holds:

1. $\left(B_{k}+\lambda I\right) p^{*}=-g_{k}$,
2. $\lambda\left(\Delta_{k}-\left\|p^{*}\right\|\right)=0$ (complementary slackness),
3. $B_{k}+\lambda I \succcurlyeq 0$.

The proof of Theorem 1 makes use of the theory of constrained optimization and Lagrangian multipliers, which we will not delve into.

Exercise 1. Prove the necessity of part 1 above using the first-order optimality condition (Lecture 14, Theorem 1).

Some observations about Theorem 1:

- If $\left\|p^{*}\right\|<\Delta_{k}$, then the constraint is inactive/irrelevant. In this case, part 2 implies $\lambda=0$, part 1 implies $B_{k} p^{*}=-g_{k}$, and part 3 implies $B_{k} \succcurlyeq 0$. See $p^{* 3}$ in the figure below.
- In the other case where $\left\|p^{*}\right\|=\Delta_{k}$, then $\lambda>0$. From part 1:

$$
\lambda p^{*}=-B_{k} p^{*}-g_{k}=-\nabla m_{k}\left(p^{*}\right),
$$

hence p^{*} is parallel to $-\nabla m_{k}\left(p^{*}\right)$ and thus normal to contours of m_{k}; equivalently, $-\nabla m_{k}\left(p^{*}\right) \in$ $N_{\mathcal{X}}\left(p^{*}\right)$, where $\mathcal{X}=\left\{p:\|p\| \leq \Delta_{k}\right\}$. See $p^{* 1}$ and $p^{* 2}$ in the figure below.

Figure 4.2 Solution of trust-region subproblem for different radii $\Delta^{1}, \Delta^{2}, \Delta^{3}$.
To find the exact minimizer p_{k}^{*}, one may use an iterative method to search for the λ that satisfies the conditions in Theorem 1.

4 Approximate methods for minimizing m_{k}

Solving the TR subproblem $\left(P_{m_{k}}\right)$ exactly is unnecessary. After all, m_{k} is only a local approximation of f.

4.1 Algorithms based on the Cauchy point

The Cauchy point p_{k}^{C} is defined by the following procedure.

Algorithm 2 Cauchy Point Calculation
Compute

$$
\begin{aligned}
p_{k}^{S} & =\underset{p:\|p\| \leq \Delta_{k}}{\operatorname{argmin}}\left\{f_{k}+g_{k}^{\top} p\right\}, \\
\tau_{k} & =\underset{\tau \geq 0:\left\|\tau p_{k}^{S}\right\| \leq \Delta_{k}}{\operatorname{argmin}} m_{k}\left(\tau p_{k}^{S}\right) .
\end{aligned}
$$

$\underline{\text { Return } p_{k}^{C}}=\tau_{k} p_{k}^{\mathrm{S}}$
Note that p_{k}^{S} is the minimizer of the linear model $f_{k}+g_{k}^{\top} p$ within the trust region; that is, p_{k}^{S} solves the linear version of the TR subproblem $\left(P_{m_{k}}\right)$. The scalar τ_{k} is obtained by minimizing the quadratic model m_{k} along the direction of p_{k}^{S}.

Linear version, ignoring the quadratic part

The Cauchy point can be easily computed. First observe that

$$
p_{k}^{\mathrm{S}}=-\frac{\Delta_{k}}{\left\|g_{k}\right\|} g_{k} .
$$

Hence

$$
\begin{aligned}
m_{k}\left(\tau p_{k}^{S}\right) & =f_{k}+\tau\left\langle g_{k},-\frac{\Delta_{k}}{\left\|g_{k}\right\|} g_{k}\right\rangle+\frac{\tau^{2}}{2}\left(\frac{\Delta_{k}}{\left\|g_{k}\right\|} g_{k}\right)^{\top} B_{k}\left(\frac{\Delta_{k}}{\left\|g_{k}\right\|} g_{k}\right) \\
& =f_{k} \underbrace{-\tau \Delta_{k}\left\|g_{k}\right\|}_{\leq 0}+\frac{\tau^{2}}{2} \frac{\Delta_{k}^{2}}{\left\|g_{k}\right\|^{2}} g_{k}^{\top} B_{k} g_{k} .
\end{aligned}
$$

The RHS is a one-dimensional quadratic function of τ. Since $\left\|p_{k}^{S}\right\|=\Delta_{k}$, the trust-region constraint $\left\|\tau p_{k}^{S}\right\| \leq \Delta_{k}$ is equivalent to $\tau \leq 1$.

- Case 1: $g_{k}^{\top} B_{k} g_{k} \leq 0$. Then $m_{k}\left(\tau p_{k}^{S}\right)$ is decreasing in τ, so the minimizer is on the boundary of the trust region, that is, $\tau_{k}=\frac{\Delta_{k}}{\left\|p_{k}^{s}\right\|}=1$.
- Case 2: $g_{k}^{\top} B_{k} g_{k}>0$. Then $m_{k}\left(\tau p_{k}^{S}\right)$ is a convex quadratic in τ, hence τ_{k} is either the unconstrained minimizer of $m_{k}\left(\tau p_{k}^{\mathrm{S}}\right)$, or 1 (on the boundary), whichever is smaller.

Combining Case $1+$ Case 2, we conclude that

$$
\tau_{k}= \begin{cases}1 & g_{k}^{\top} B_{k} g_{k} \leq 0, \\ \min \left\{1, \frac{\left\|g_{k}\right\|^{3}}{\Delta_{k} g_{k} B_{k} g_{k}}\right\}, & g_{k}^{\top} B_{k} g_{k}>0 .\end{cases}
$$

The Cauchy point p_{k}^{C} can be used as a benchmark for an approximate solution p_{k} to the TR subproblem $\left(P_{m_{k}}\right)$. As we will show later, for a TR method to converge globally, it is sufficient if p_{k} reduces m_{k} by at least some constant times the decrease from the Cauchy point, i.e.,

$$
m_{k}(0)-m_{k}\left(p_{k}\right) \leq c \cdot\left(m_{k}(0)-m_{k}\left(p_{k}^{\mathrm{C}}\right)\right), \quad \text { where } c>0 \text { is a constant. }
$$

Note that the RHS is roughly the progress made by gradient descent.

4.2 Improving the Cauchy point

If we simply using the Cauchy point, $p_{k}=p_{k}^{\mathrm{C}}$, then the TR method will move in the direction $-\nabla f\left(x_{k}\right)$ and hence converge no faster than gradient descent.

The Cauchy point only uses the matrix B_{k} to determine the length of the step but not the direction. To achieve faster convergence, we need to make more substantial use of B_{k}.

4.2.1 The dogleg method

The Dogleg method is used only when $B_{k} \succ 0$.
Intuition: consider two extremes.

- If Δ_{k} is small, then $\Delta_{k}^{2} \ll \Delta_{k}$. Hence for $\|p\| \leq \Delta_{k}$, the quadratic model is approximately linear: $m_{k}(p) \approx f_{k}+g_{k}^{\top} p$. In this case, it is approximately optimal to use the Cauchy point, i.e., $p_{k}^{*} \approx p_{k}^{C}$.
- If Δ_{k} is large, then the constraint $\left\|p_{k}\right\| \leq \Delta_{k}$ becomes irrelevant. In this case, p_{k}^{*} approximately equals the unconstrained minimizer of m_{k}, i.e., $p_{k}^{*} \approx-B_{k}^{-1} p_{k}=: p_{k}^{\mathrm{B}}$.

The dogleg method interpolates between these two extremes.

