Lecture 24: Trust-Region Methods

Yudong Chen

So far, we have been looking at methods of the form

$$x_{k+1} = x_k - \alpha_k \underbrace{\underline{B_k^{-1} \nabla f(x_k)}}_{-p_k},$$

where $B_k \succ 0$. Examples:

- $B_k = I$: steepest descent;
- $B_k = \nabla^2 f(x_k)$: (damped) Newton's method
- B_k approximates $\nabla^2 f(x_k)$: quasi-Newton method.

In all these methods, we first determine the search direction p_k , then choose the stepsize α_k . In Trust region (TR) methods, we first determine the size of the step, then the direction.

1 Trust region method

We want to compute the step p_k that gives the next iterate $x_{k+1} = x_k + p_k$.

Let $B_k \in \mathbb{R}^{d \times d}$ be given; typically, B_k equals $\nabla^2 f(x_k)$ or an approximation thereof obtained by Quasi-Newton (say SR1). Consider the following a quadratic approximate model of f around x_k :

$$m_k(p) := f(x_k) + \langle \nabla f(x_k), p \rangle + \frac{1}{2} p^\top B_k p.$$

Basic idea of TR: to compute p_k , we minimize $m_k(p)$ over a region (a ball centered at x_k) within which we trust that m_k is a good approximation of f.

Remark 1. We do *not* require $B_k \succ 0$. In particular, we can use an indefinite $\nabla^2 f(x_k)$ without modification.

Formally, the (exact) TR direction is given by

$$p_k := \operatorname*{argmin}_{p \in \mathbb{R}^d : \|p\| \le \Delta_k} m_k(p),$$

where Δ_k is the radius of the trust region.

Example 1. Suppose $f(x) = x_1^2 - x_2^2$, which is a nonconvex quadratic. The quadratic model is the function itself: $m_k(p) = f(x_k + p)$. If $x_k = 0$, then $\nabla f(x_k) = 0$, so gradient descent (GD) and Newton's method will stay at 0 (a stationary point). TR method will take the step

$$p_{k} = \operatorname*{argmin}_{p:\|p\| \le \Delta_{k}} m_{k}(p)$$

=
$$\operatorname*{argmin}_{p:p_{1}^{2}+p_{2}^{2} \le \Delta_{k}^{2}} \left\{ (0+p_{1})^{2} - (0+p_{2})^{2} \right\} = (0,\Delta_{k}) \text{ or } (0,-\Delta_{k}).$$

For more general functions, see the illustration below from Nocedal-Wright:

To completely specify the TR method, we need to decide:

- 1. how to choose the radius Δ_k ,
- 2. how and to what accuracy to solve the minimization problem $\min_{p \in \mathbb{R}^d: ||p|| \le \Delta_k} m_k(p)$.

2 Choosing the radius Δ_k

Define

$$\rho_k := \underbrace{\frac{f(x_k) - f(x_k + p_k)}{\underbrace{m_k(0) - m_k(p_k)}}_{\text{predicted reduction}, \ge 0}.$$

The ratio ρ_k tells us whether we are making progress, and if so, how much. General idea:

- 1. If $\rho_k \approx 1$, then f and m_k agree well for within the trust region $||p|| \leq \Delta_k$. We can try increasing Δ_k in next iteration.
- 2. If $\rho_k < 0$, then *f* has increased. We should reject the step.
- 3. If ρ_k is small or negative, we should consider decreasing Δ_k (shrink the trust region).

The following algorithm describes the process.

Algorithm 1 Trust Region

Input: $\hat{\Delta} > 0$ (largest radius), $\Delta_0 \in (0, \hat{\Delta})$ (initial radius), $\eta \in [0, 1/4)$ (acceptance threshold) for k = 0, 1, 2, ... $p_k = \operatorname{argmin}_{p:\|p\| \leq \Delta_k} m_k(p)$ (or approximate minimizer) $\rho_k = \frac{f(x_k) - f(x_k + p_k)}{m_k(0) - m_k(p_k)}$ if $\rho_k < \frac{1}{4}$: \land insufficient progress $\Delta_{k+1} = \frac{1}{4} \Delta_k$ \land reduce radius else: if $\rho_k > \frac{3}{4}$ and $\|p_k\| = \Delta_k$: \land sufficient progress, active trust region $\Delta_{k+1} = \min \{2\Delta_k, \hat{\Delta}\}$ \land increase radius else: \land sufficient progress, inactive trust region $\Delta_{k+1} = \Delta$ \land keep radius if $\rho_k > \eta$: \land sufficient progress $x_{k+1} = x_k + p_k$ \land accept step

else: \\ insufficient progress

 $x_{k+1} = x_k$ $\land \land$ reject step

end for

3 Exact minimization of m_k

In each iteration of Algorithm 1, we need to solve the TR sub-problem

$$\min_{p:||p|| \le \Delta_k} m_k(p) := f_k + g_k^\top p + \frac{1}{2} p^\top B_k p, \qquad (P_{m_k})$$

where we introduce the shorthands $f_k := f(x_k)$ and $g_k := \nabla f(x_k)$.

The theorem below characterizes the exact minimizer $p_k^* = \operatorname{argmin}_{p:||p|| < \Delta_k} m_k(p)$.

Theorem 1 (Characterizing the solution to (P_{m_k})). The vector $p^* \in \mathbb{R}^d$ is a global solution to the problem (P_{m_k}) if and only if p^* is feasible $(||p^*|| \leq \Delta_k)$ and there exists $\lambda \geq 0$ such that the following condition holds:

- 1. $(B_k + \lambda I)p^* = -g_k$,
- 2. $\lambda(\Delta_k ||p^*||) = 0$ (complementary slackness),

3.
$$B_k + \lambda I \geq 0$$
.

The proof of Theorem 1 makes use of the theory of constrained optimization and Lagrangian multipliers, which we will not delve into.

Some observations about Theorem 1:

- If $||p^*|| < \Delta_k$, then the constraint is inactive/irrelevant. In this case, part 2 implies $\lambda = 0$, part 1 implies $B_k p^* = -g_k$, and part 3 implies $B_k \succeq 0$. See p^{*3} in the figure below.
- In the other case where $||p^*|| = \Delta_k$, then $\lambda > 0$. From part 1:

$$\lambda p^* = -B_k p^* - g_k = -\nabla m_k(p^*),$$

hence p^* is parallel to $-\nabla m_k(p^*)$ and thus normal to contours of m_k ; equivalently, $-\nabla m_k(p^*) \in N_{\mathcal{X}}(p^*)$, where $\mathcal{X} = \{p : ||p|| \leq \Delta_k\}$. See p^{*1} and p^{*2} in the figure below.

Figure 4.2 Solution of trust-region subproblem for different radii Δ^1 , Δ^2 , Δ^3 .

To find the exact minimizer p_k^* , one may use an iterative method to search for the λ that satisfies the conditions in Theorem 1.

4 Approximate methods for minimizing *m_k*

Solving the TR subproblem (P_{m_k}) exactly is unnecessary. After all, m_k is only a local approximation of f.

4.1 Algorithms based on the Cauchy point

The *Cauchy point* p_k^{C} is defined by the following procedure.

Algorithm 2 Cauchy Point Calculation

Compute

$$p_k^{\mathrm{S}} = \operatorname*{argmin}_{p:\|p\| \le \Delta_k} \left\{ f_k + g_k^\top p \right\},$$

$$\tau_k = \operatorname*{argmin}_{\tau \ge 0: \left\| \tau p_k^{\mathrm{S}} \right\| \le \Delta_k} m_k(\tau p_k^{\mathrm{S}}).$$

Return $p_k^{\rm C} = \tau_k p_k^{\rm S}$

Note that p_k^S is the minimizer of the *linear* model $f_k + g_k^\top p$ within the trust region; that is, p_k^S solves the linear version of the TR subproblem (P_{m_k}). The scalar τ_k is obtained by minimizing the *quadratic* model m_k along the direction of p_k^S .

Linear version, ignoring the quadratic part

The Cauchy point can be easily computed. First observe that

$$p_k^{\rm S} = -\frac{\Delta_k}{\|g_k\|} g_k.$$

Hence

$$m_{k}(\tau p_{k}^{\mathrm{S}}) = f_{k} + \tau \left\langle g_{k}, -\frac{\Delta_{k}}{\|g_{k}\|}g_{k} \right\rangle + \frac{\tau^{2}}{2} \left(\frac{\Delta_{k}}{\|g_{k}\|}g_{k}\right)^{\top} B_{k}\left(\frac{\Delta_{k}}{\|g_{k}\|}g_{k}\right)$$
$$= f_{k}\underbrace{-\tau\Delta_{k}\|g_{k}\|}_{\leq 0} + \frac{\tau^{2}}{2}\frac{\Delta_{k}^{2}}{\|g_{k}\|^{2}}g_{k}^{\top}B_{k}g_{k}.$$

The RHS is a one-dimensional quadratic function of τ . Since $||p_k^S|| = \Delta_k$, the trust-region constraint $||\tau p_k^S|| \le \Delta_k$ is equivalent to $\tau \le 1$.

- Case 1: $g_k^{\top} B_k g_k \leq 0$. Then $m_k(\tau p_k^{\rm S})$ is decreasing in τ , so the minimizer is on the boundary of the trust region, that is, $\tau_k = \frac{\Delta_k}{\|p_k^{\rm S}\|} = 1$.
- Case 2: $g_k^\top B_k g_k > 0$. Then $m_k(\tau p_k^S)$ is a convex quadratic in τ , hence τ_k is either the unconstrained minimizer of $m_k(\tau p_k^S)$, or 1 (on the boundary), whichever is smaller.

Combining Case 1 + Case 2, we conclude that

$$au_k = egin{cases} 1 & g_k^ op B_k g_k \leq 0, \ \min\left\{1, rac{\|g_k\|^3}{\Delta_k g_k^ op B_k g_k}
ight\}, & g_k^ op B_k g_k > 0. \end{cases}$$

The Cauchy point p_k^C can be used as a benchmark for an approximate solution p_k to the TR subproblem (P_{m_k}). As we will show later, for a TR method to converge globally, it is sufficient if p_k reduces m_k by at least some constant times the decrease from the Cauchy point, i.e.,

$$m_k(0) - m_k(p_k) \le c \cdot \left(m_k(0) - m_k(p_k^{\mathsf{C}})\right)$$
, where $c > 0$ is a constant.

Note that the RHS is roughly the progress made by gradient descent.

4.2 Improving the Cauchy point

If we simply using the Cauchy point, $p_k = p_k^C$, then the TR method will move in the direction $-\nabla f(x_k)$ and hence converge no faster than gradient descent.

The Cauchy point only uses the matrix B_k to determine the length of the step but not the direction. To achieve faster convergence, we need to make more substantial use of B_k .

4.2.1 The dogleg method

The Dogleg method is used only when $B_k \succ 0$.

Intuition: consider two extremes.

- If Δ_k is small, then Δ²_k ≪ Δ_k. Hence for ||p|| ≤ Δ_k, the quadratic model is approximately linear: m_k(p) ≈ f_k + g^T_k p. In this case, it is approximately optimal to use the Cauchy point, i.e., p^{*}_k ≈ p^C_k.
- If Δ_k is large, then the constraint $||p_k|| \leq \Delta_k$ becomes irrelevant. In this case, p_k^* approximately equals the unconstrained minimizer of m_k , i.e., $p_k^* \approx -B_k^{-1}p_k =: p_k^{\text{B}}$.

The dogleg method interpolates between these two extremes.