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Lecture 25–26: Trust-Region Methods: Improving Cauchy
Point; Convergence

Yudong Chen

Recall: TR sub-problem:

min
p:∥p∥≤∆k

mk(p) := fk + ⟨gk, p⟩+ 1
2

p⊤Bk p, (Pmk )

We want to approximate the exact minimizer p∗k (∆k).

1 Improving the Cauchy point

Recall Cauchy point: pC
k = τk pS

k , where

pS
k = argmin

p:∥p∥≤∆

{
fk + g⊤k p

}
= − ∆k

∥gk∥
gk, (1a)

τk = argmin
τ≥0:∥τpS

k∥≤∆

mk(τpS
k) =

1 g⊤k Bkgk ≤ 0,

min
{

1, ∥gk∥3

∆g⊤k Bk gk

}
, g⊤k Bkgk > 0.

(1b)

We discuss two ways of improving upon the Cauchy point: the dogleg method, and 2-D sub-
space minimization.

1.1 The dogleg method

This methods is typically used only when Bk ≻ 0. It interpolates between two extremes:

• If ∆ is small, then mk(p) ≈ fk + g⊤k p for ∥p∥ ≤ ∆, hence p∗k ≈ pC
k (gradient descent direction).

• If ∆ is large, then ∥p∥ ≤ ∆ becomes irrelevant, hence p∗k ≈ −B−1
k gk (unconstrained mini-

mizer).

Formally, define

pU
k := −

g⊤k gk

g⊤k Bkgk
gk = (unconstrained) GD step with exact line search

pB
k := −B−1

k gk = unconstrained minimizer of mk

Consider the “dogleg path” defined below:

p̃k(τ) :=

{
τpU

k , 0 ≤ τ ≤ 1,
pU

k + (τ − 1)(pB
k − pU

k ), 1 ≤ τ ≤ 2.
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Note that p̃k(τ) consists of two line segments and is an approximation of the optimal path p∗k (∆).
The dogleg step is given by constrained minimizer over the path p̃(τ), i.e.,

pD
k := min

0≤τ≤2
∥ p̃k(τ)∥≤∆

mk ( p̃k(τ)) .

Illustration:

Another illustration:

 

Thanks to the following lemma, it is easy to compute the minimizer pD
k along the dogleg path.

Lemma 1 (Lemma 4.2 in Nocedal-Wright). Let Bk be positive definite. Then

(i) ∥ p̃k(τ)∥ is an increasing function of τ;

(ii) mk ( p̃k(τ)) is a decreasing function of τ.

Consequently:

• If
∥∥pB

∥∥ < ∆, then the dogleg path does not intersect the TR boundary ∥p∥ = ∆. Since mk is
decreasing in τ,we have pD

k = p̃k(2) = pB.

• If
∥∥pB

∥∥ ≥ ∆, then the dogleg path intersects the boundary at one point, which is pD
k . The

corresponding τ can be computed by solving the scalar equation ∥ p̃k(τ)∥ = ∆.
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1.2 Two-dimensional subspace minimization

The dogleg method minimizes over the one-dimensional path defined by pU and pB. This can
generalized by minimizing over the 2-D subspace spanned by pU ∝ −gk and pB = −B−1

k gk.
Formally:

p2D
k = argmin

p∈Rd

{
mk(p) : ∥p∥ ≤ ∆k, p ∈ span{gk, B−1

k gk}
}

.

The minimizer is relatively easy to compute (amounts to finding the roots of a fourth degree
polynomial).

Unlike dogleg, 2D-subspace minimization can readily be adapted to handle indefinite Bk. In
this case, there exists λ > 0 such that p∗k = −(Bk + λI)−1gk (by Theorem 1 from the last lecture).
Therefore, we can change the feasible 2D subspace to

span
{

gk, (Bk + αk I)−1 gk

}
,

where αk ∈ (−λmin(Bk),−2λmin(Bk)) .

2 Global convergence of TR methods

With respect to the model mk, both dogleg and 2D subspace minimization are at least as good as
taking the Cauchy point: the 2D subspace contains the dogleg path, which in turn contains the
Cauchy point. Consequently, they enjoy global convergence, as we show below.

2.1 Progress made by Cauchy point

Recall that fk = f (xk), gk = ∇ f (xk), and

mk(p) = fk + g⊤k p +
1
2

p⊤Bk p.

The lemma below quantifies the progress on mk made by the Cauchy point.

Lemma 2. (Progress by Cauchy point; Lemma 4.3 in Nocedal-Wright) The Cauchy point pC
k satisfies

mk

(
pC

k

)
− mk(0) ≤ −1

2
∥gk∥2 min

{
∆k,

∥gk∥2
∥Bk∥2

}
.

Before proving the lemma, we briefly mention the intuition on how to use this lemma to
prove global convergence. Assume that mk(0) = f (xk) (always true), mk

(
pC

k

)
≈ f (xk+1), Bk =

∇2 f (xk) ≼ LI and ∥gk∥
∥Bk∥ ≤ ∆k Then Lemma 2 implies the sufficient descent property

f (xk+1)− f (xk) ≤ − 1
2L

∥∇ f (xk)∥2
2 ,

which in turn guarantees global convergence.
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Proof of Lemma 2. Note that

mk(p)− mk(0) = g⊤k p +
1
2

p⊤Bk p.

Consider the three cases in the Cauchy point calculation in (1).
Case 1: g⊤k Bkgk ≤ 0. Then pC

k = pS
k = − ∆k

∥gk∥ gk. Hence

mk(pC
k )− mk(0) = −∥gk∥∆k +

1
2

∆2
k

∥gk∥2 g⊤k Bkgk︸ ︷︷ ︸
≤0

≤ −∥gk∥∆k

≤ −1
2
∥gk∥ · min

{
∆k,

∥gk∥
∥Bk∥

}
.

Case 2: g⊤k Bkgk > 0 and ∥gk∥3

∆k g⊤k Bk gk
≤ 1. Then:

τk =
∥gk∥3

∆kg⊤k Bkgk
, pC

k = − gk ∥gk∥2

g⊤k Bkgk
.

Hence

mk(pC
k )− mk(0) = − ∥gk∥4

g⊤k Bkgk
+

1
2

∥gk∥4

g⊤k Bkgk

= −1
2

∥gk∥4

g⊤k Bkgk

≤ −1
2

∥gk∥4

∥B∥2 ∥gk∥2 = −1
2
∥gk∥2

∥B∥2

≤ −1
2
∥gk∥2 · min

{
∆k,

∥gk∥2
∥Bk∥2

}
.

Case 3: g⊤k Bkgk > 0 and ∥gk∥3

∆k g⊤k Bk gk
> 1. The latter implies that g⊤k Bkgk <

∥gk∥3

∆k
and thus pC

k = pS
k .

Hence

mk

(
pC

k

)
− mk(0) = −∥gk∥∆k +

1
2

∆2
k

∥gk∥2 g⊤k Bkgk︸ ︷︷ ︸
<
∥gk∥2

∆k

≤ −1
2
∥gk∥∆k

≤ −1
2
∥gk∥ · min

{
∆k,

∥gk∥
∥Bk∥

}
.

In all three cases, we establish the desired inequality.

The theorem below, which follows trivially from Lemma 2, quantifies the decrease obtained
by any solution that achieves some constant fraction of the progress by the Cauchy point.
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Theorem 1 (Theorem 4.4 in Nocedal-Wright). Let pk be a vector such that ∥pk∥ ≤ ∆k and

mk(pk)− mk(0) ≤ c
(

mk

(
pC

k

)
− mk(0)

)
, (2)

where c > 0 is some constant. Then

mk(pk)− mk(0) ≤ − c
2
∥gk∥min

{
∆k,

∥gk∥
∥Bk∥

}
. (3)

Theorem 1 can be viewed as a “descent lemma” for TR methods. The exact minimizer of the
TR subproblem (Pmk ), the dogleg method and the 2D subspace minimization method all satisfy (2)
and in turn (3) with c = 1.

2.2 Convergence to stationary points

Recall the generic TR algorithm.

Algorithm 1 Trust Region

Input: ∆̂ > 0 (largest radius), ∆0 ∈ (0, ∆̂) (initial radius), η ∈ [0, 1/4) (acceptance threshold)
for k = 0, 1, 2, . . .

pk = argminp:∥p∥≤∆k
mk(p) (or approximate minimizer)

ρk =
f (xk)− f (xk+pk)
mk(0)−mk(pk)

if ρk <
1
4 : \\ insufficient progress

∆k+1 =
1
4

∆k \\ reduce radius

else:
if ρk >

3
4 and ∥pk∥ = ∆k: \\ sufficient progress, active trust region

∆k+1 = min
{

2∆k, ∆̂
}

\\ increase radius

else: \\ sufficient progress, inactive trust region

∆k+1 = ∆ \\ keep radius

if ρk > η: \\ sufficient progress

xk+1 = xk + pk \\ accept step

else: \\ insufficient progress

xk+1 = xk \\ reject step

end for

Two types of global convergence guarantees can be proved depending on the value of η:

1. η = 0 (always accept if there is any progress). Then {gk} has a limit point at zero, i.e.,
lim infk→∞ ∥gk∥ = 0.
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2. η > 0 (reject steps with low progress). Then we have the stronger result that gk → 0.

Below we focus on the first case.
Consider the level set

S :=
{

x ∈ Rd | f (x) ≤ f (x0)
}

.

Define an open neighborhood of S by

S(R0) := {x | ∥x − y∥ < R0 for some y ∈ S} .

Illustration below.

Assumptions:

1. ∀k : ∥Bk∥2 ≤ β < ∞.

2. f is bounded below on S.

3. f is smooth (i.e., has Lipschitz continuous gradient) on S(R0) for some R0 > 0.

For generality, we allow constant-factor violations of the trust region bound; that is, we only re-
quire that

∥pk∥ ≤ γ∆k, for some γ ≥ 1. (4)

Theorem 2 (Theorem 4.5 in Nocedal-Wright). Let η = 0 in Algorithm 1. Suppose that the assumptions
stated above are satisfied, and the step pk satisfies the sufficient progress condition (3) and the trust region
bound (4) for all k. Then

lim inf
k→∞

∥gk∥ = 0.

Proof outline:

1. Assume for the purpose of contradiction that there exists ϵ > 0, K > 0 such that for all k ≥ K:
∥gk∥ ≥ ϵ.

2. Then there exists ∆̄ > 0 such that for all k ≥ K: ∆k ≥ min
{

∆K, ∆̄/4
}
> 0.

3. Contradict statement 2 by showing limk→∞ ∆k = 0. There are two cases:

(a) ρk ≥ 1
4 for some infinite sequence of k, in which case we show that f decreases by some

constant times ∆k, so it must be that ∆k → 0, as f is bounded below.
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(b) ρk < 1
4 for all k sufficiently large. Then by Algorithm 1, ∆k is reduced by a factor 1/4,

so limk→∞ ∆k = 0.

Now the formal proof.

Proof of Theorem 2. Recall that

mk(p) = fk + g⊤k p +
1
2

p⊤Bk p,

where fk = f (xk) and gk = ∇ f (xk), and mk(0) = fk.
Suppose that ∥pk∥ ≤ R0, so that xk, xk + pk ∈ S(R0). By assumption, there exists β1 such that

f is β1-smooth on S(R0). Also note that

|ρk − 1| =
∣∣∣∣ f (xk)− f (xk + pk)

mk(0)− mk(pk)
− mk(0)− mk(pk)

mk(0)− mk(pk)

∣∣∣∣ = ∣∣∣∣mk(pk)− f (xk + pk)

mk(0)− mk(pk)

∣∣∣∣ , (5)

where we use f (xk) = mk(0). Let us control the numerator and denominator on the RHS.
By Taylor’s Theorem, we have

f (xk + pk) = f (xk) +
∫ 1

0
⟨∇ f (xk + tpk), pk⟩dt.

We can write mk(pk) as

mk(pk) = fk + g⊤k pk +
1
2

p⊤k Bk pk = f (xk) +
∫ 1

0
⟨∇ f (xk), pk⟩dt +

1
2

p⊤k Bk pk.

It follows that

|mk(pk)− f (xk + pk)| ≤
∣∣∣∣∫ 1

0
⟨∇ f (xk + tpk)−∇ f (xk), pk⟩dt

∣∣∣∣+ 1
2

∣∣∣p⊤k Bk pk

∣∣∣
≤ β1

2
∥pk∥2 +

1
2
∥Bk∥2 ∥pk∥2 β1-smoothness of f

≤ β1 + β

2
∥pk∥2 ∥Bk∥2 ≤ β

≤ β1 + β

2
γ2∆2

k . ∥pk∥ ≤ γ∆k (6)

For the purpose of contradiction, assume that there exists ϵ > 0 and K > 0 such that

∥∇ f (xk)∥ = ∥gk∥ ≥ ϵ, ∀k ≥ K.

In this case, the sufficient progress condition (3) implies

|mk(0)− mk(pk)| ≥ c1 ∥gk∥min
{

∆k,
∥gk∥
∥Bk∥

}
≥ c1ϵ min

{
∆k,

ϵ

∥Bk∥

}
. (7)

Combining (5), (6) and (7), we obtain

|ρk − 1| ≤
γ2∆2

k(β1 + β)

2c1ϵ min {∆k, ϵ/β} , ∀k ≥ K.
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We want to upper bound the RHS. Define:

∆̄ := min
{

c1ϵ

γ2(β1 + β)
,

R0

γ

}
,

which satisfies
∆̄ ≤ c1ϵ

γ2(β1 + β)
≤ ϵ

β

since c1 ≤ 1, γ ≥ 1, β1 ≥ 0. Therefore, for all ∆k ≤ ∆̄, we have min
{

∆k, ϵ
β

}
= ∆k, hence

|ρk − 1| ≤
γ2∆2

k(β1 + β)

2c1ϵ∆k
≤ ∆k

2∆̄
≤ 1

2
, ∀k ≥ K,

where we use γ2(β1+β)
c1ϵ ≤ ∆̄. It follows that ρk > 1

4 . By the workings of Algorithm 1, we have
∆k+1 ≥ ∆k whenever ∆k ≤ ∆̄. Thus, ∆k can decrease (by a factor of 1

4 ) only if ∆k ≥ ∆̄, and therefore
we conclude that

∆k ≥ min
{

∆K,
∆̄
4

}
, ∀k ≥ K. (8)

Consider two cases:

(a) Suppose that there exists an infinite subsequence K of {K, K + 1, K + 2, . . .} such that ρk ≥
1
4 , ∀k ∈ K. Then

f (xk+1)− f (xk) = ρk (mk(pk)− mk(0))

≤ −1
4
(mk(0)− mk(pk))

≤ − c1

4
ϵ min

{
∆k,

ϵ

β

}
.

Since f is bounded below, it must be limk→∞,k∈K ∆k = 0, which is a contradiction to (8).

(b) Suppose that no such K exists. Therefore ρk < 1
4 must hold for all sufficiently large k. But

from Algorithm 1, this means that ∆k+1 = 1
4 ∆k, which implies limk→∞ ∆k = 0, again contra-

dicting (8).

We conclude that the original assertion ∥gk∥ ≥ ϵ, ∀k ≥ K must be false, hence lim infk→∞ ∥gk∥ =
0.

Option reading:

• When η > 0, we have gk → 0. See Theorem 4.6 in Nocedal-Wright.

• For small-scale problems, we may solve the TR subproblem min∥p∥≤∆k
mk(p) more accu-

rately using iterative methods. See Section 4.3 in Nocedal-Wright.
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3 Local convergence of TR-Newton method

The results discussed so far hold for general Bk. We now specialize to TR methods that use the
true Hessian Bk = ∇2 f (xk) for all sufficiently large k. (We refer to these methods as TR-Newton.)
In this case, we expect that the TR bound ∥pk∥ ≤ ∆k becomes inactive near the minimizer of f
and thus approximate solution to the TR subproblem (Pmk ) becomes similar to the Newton step
pN

k := −∇2 f (xk)
−1∇ f (xk).

The theorem below establishes superlinear local convergence of TR-Newton.

Theorem 3 (Theorem 4.9 in Nocedal-Wright). Let f be twice continuously differentiable (with β1-
Lipschitz gradients and L-Lipschitz Hessians) in a neighborhood of a local minimizer x∗ satisfying ∇ f (x∗) =
0,∇2 f (x∗) ≻ 0. Suppose that

1. {xk} converges to x∗;

2. for all k sufficiently large, the TR algorithm with Bk = ∇2 f (xk) chooses pk such that

(a) the sufficient progress condition (3) holds, and
(b) pk is asymptotically similar to pN

k = −∇2 f (xk)
−1gk whenever

∥∥pN
k

∥∥ ≤ ∆k
2 , i.e.,∥∥∥pk − pN

k

∥∥∥ = o(
∥∥∥pN

k

∥∥∥). (9)

Then the TR bound becomes inactive for all sufficiently large k and the convergence of {xk} to x∗ is super-
linear.

Proof outline: Show that for all sufficiently large k, ρk is close to 1, so Algorithm 1 with keep
the TR radius ∆k large. Consequently, we have

∥∥pN
k

∥∥ ≤ ∆k
2 , so (9) holds, in which case we can

invoke the generic result in Lecture 21, Theorem 2 to establish the superlienar convergence.

Proof of Theorem 3. We want bound

|ρk − 1| =
∣∣∣∣ f (xk)− f (xk + pk)− (mk(0)− mk(pk))

mk(0)− mk(pk)

∣∣∣∣ . (10)

First consider the numerator. Suppose that k is large enough.

• If
∥∥pN

k

∥∥ ≤ ∆k
2 ,then (9) applies, hence ∥pk∥ ≤

∥∥pk − pN
k

∥∥+ ∥∥pN
k

∥∥ ≤ 2
∥∥pN

k

∥∥ .

• If
∥∥pN

k

∥∥ > ∆k
2 , then ∥pk∥ ≤ ∆k < 2

∥∥pN
k

∥∥.

In both cases, we have

∥pk∥ ≤ 2
∥∥∥pN

k

∥∥∥ = 2
∥∥∥∇2 f (xk)

−1gk

∥∥∥
2
≤ 2

∥∥∥∇2 f (xk)
−1

∥∥∥
2
∥gk∥2 .

Hence ∥gk∥ ≥ ∥pk∥2
2∥∇2 f (xk)−1∥2

. Plugging this bound into the sufficient progress condition (3), we
obtain

mk(pk)− mk(0)

≤− c1 ∥gk∥min
{

∆k,
∥gk∥

∥∇2 f (xk)∥

}
≤− c1

∥pk∥
2 ∥∇2 f (xk)−1∥ min

{
∥pk∥ ,

∥pk∥
2 ∥∇2 f (xk)−1∥ ∥∇2 f (xk)∥

}
∵ ∆k ≥ ∥pk∥

=− c1 ∥pk∥2

4 ∥∇2 f (xk)−1∥2
2 ∥∇2 f (xk)∥2

. ∵
∥∥∥∇2 f (xk)

−1
∥∥∥ ∥∥∇2 f (xk)

∥∥ ≥ 1

9
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When xk is sufficiently close to x∗, we have ∇2 f (xk) ≈ ∇2 f (x∗). Hence (by continuity of Hessian)

c1

4 ∥∇2 f (xk)−1∥2 ∥∇2 f (xk)∥
≥ c1

8 ∥∇2 f (x∗)−1∥2 ∥∇2 f (x∗)∥
=: c3.

We conclude that

mk(pk)− mk(0) ≤ −c3 ∥pk∥2 for all sufficiently large k.

We next bound the denominator of the RHS of (10):

| f (xk)− f (xk + pk)− (mk(0)− mk(pk))|

=

∣∣∣∣−g⊤k pk −
1
2

∫ 1

0
p⊤k ∇2 f (xk + tpk)pkdt + g⊤k pk +

∫ 1

0
p⊤k ∇2 f (xk)pkdt

∣∣∣∣ Taylor’s Theorem

=

∣∣∣∣1
2

∫ 1

0
p⊤k

[
∇2 f (xk + tpk)−∇2 f (xk)

]
pkdt

∣∣∣∣
≤1

2

∫ 1

0

∥∥∇2 f (xk + tpk)−∇2 f (xk)
∥∥

2︸ ︷︷ ︸
≤Lt∥pk∥

∥pk∥2
2 dt Lipschitzness of ∇2 f

≤L
4
∥pk∥3 .

Combining the last two bounds with (10), we obtain

|ρk − 1| ≤ (L/4) ∥pk∥3

c3 ∥pk∥2 =
L

4c3
∥pk∥ ≤ L∆k

4c3

=⇒ ρk ≥ 1 − L∆k

4c3
.

Therefore, Algorithm 1 will keep ∆k bounded away from zero. On the other hand, as {xk} → x∗,
we must have

∥∥pN
k

∥∥ =
∥∥∇2 f (xk)

−1gk
∥∥ → 0 since gk → 0. Thus, we have

∥∥pN
k

∥∥ ≤ ∆k
2 and thus (9)

holds. In this case, we have

∥pk∥ ≤
∥∥∥pk − pN

k

∥∥∥+ ∥∥∥pN
k

∥∥∥ ≤ (1 + o(1))
∥∥∥pN

k

∥∥∥ < ∆k,

so the TR constraint is eventually inactive. Moreover, Theorem 2 and Claim 1 in Lecture 21 ensures
that when (9) holds, we have superlinear convergence.

Remark 1. In fact, “reasonable” TR methods with Bk = ∇2 f (xk) will eventually use pk = pN
k and

therefore converge quadratically. In particular, this holds for the dogleg method, 2D subspace
minimization and other approximate algorithm for solving the TR-subproblem min∥p∥≤∆k

mk(p).
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