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Lecture 25-26: Trust-Region Methods: Improving Cauchy
Point; Convergence

Yudong Chen

Recall: TR sub-problem:

. 1 T
min m = fr+ (<, )+ =p Bip, P,
Join mi(p) = fet (8w p)+ 5P Brp (Pr,)

We want to approximate the exact minimizer pj (Ay).

1 Improving the Cauchy point

Recall Cauchy point: p$ = 7p?, where

. A
pi = argmin {fi+eir}= e & (1a)
pillpll<
1 8 Bigk <0,
. S k
T = argmin m(TpR) = ) el - (1b)
TZO:HTpEHﬁA {mln {11 Ag;kBkgk } s 8k Bkgk > 0.

We discuss two ways of improving upon the Cauchy point: the dogleg method, and 2-D sub-
space minimization.
1.1 The dogleg method
This methods is typically used only when By > 0. It interpolates between two extremes:

o If Aissmall, then my(p) = fi + g p for ||p|| < A, hence pj ~ p$ (gradient descent direction).

o If Ais large, then ||p|| < A becomes irrelevant, hence p; ~ —B, 'g; (unconstrained mini-
mizer).

Formally, define
U._ 81 8k

Pi= 8¢ Brsk

pE = —B ! gk = unconstrained minimizer of m

gx = (unconstrained) GD step with exact line search

Consider the “dogleg path” defined below:

; ™, 0<t<1,
pr(T) =14 ¢ -
pe +(T—1D(pf —pr), 1<t<2
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Note that fix(T) consists of two line segments and is an approximation of the optimal path p;(A).
The dogleg step is given by constrained minimizer over the path j(7), i.e.,

ka = oglri?z mi (pi(T))-

(o)l <A

Ilustration:

Another illustration:

Thanks to the following lemma, it is easy to compute the minimizer pP along the dogleg path.
Lemma 1 (Lemma 4.2 in Nocedal-Wright). Let By be positive definite. Then
(i) ||px(T)]| is an increasing function of T;
(ii) my (Px(T)) is a decreasing function of .
Consequently:

o If || pP|| < A, then the dogleg path does not intersect the TR boundary ||p|| = A. Since my is
decreasing in T,we have pP = p(2) = pb.

o If |p®|| > A, then the dogleg path intersects the boundary at one point, which is pp. The
corresponding T can be computed by solving the scalar equation ||7x(7)| = A.
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1.2 Two-dimensional subspace minimization

The dogleg method minimizes over the one-dimensional path defined by pV and p®. This can
generalized by minimizing over the 2-D subspace spanned by p¥ o« —g; and p® = —B; Loy,
Formally:

P = argmdin {mk(P) |l < Bk, p € span{gy, B,:lgk}}-
peR

The minimizer is relatively easy to compute (amounts to finding the roots of a fourth degree
polynomial).

Unlike dogleg, 2D-subspace minimization can readily be adapted to handle indefinite By. In
this case, there exists A > 0 such that p; = — (B + AI) g, (by Theorem 1 from the last lecture).
Therefore, we can change the feasible 2D subspace to

span {81«/ (B + )™ gk} ,

where a; € (—Amin(Bk), —2Amin(Bx)) -

2 Global convergence of TR methods

With respect to the model my, both dogleg and 2D subspace minimization are at least as good as
taking the Cauchy point: the 2D subspace contains the dogleg path, which in turn contains the
Cauchy point. Consequently, they enjoy global convergence, as we show below.

2.1 Progress made by Cauchy point
Recall that fi = f(x¢), gk = Vf(xx), and
1
mi(p) = fe+8c P+ 5p " Bep.

The lemma below quantifies the progress on 1, made by the Cauchy point.

Lemma 2. (Progress by Cauchy point; Lemma 4.3 in Nocedal-Wright) The Cauchy point p$ satisfies

1 . 8kl
c) _ - 2
My (pk> mk(o) < > ||gk||2m1n {Ak’ HBkHz :

Before proving the lemma, we briefly mention the intuition on how to use this lemma to
prove global convergence. Assume that m(0) = f(x;) (always true), my (p$) =~ f(xx11), By =

V2f(xx) < LI and % < Ay Then Lemma 2 implies the sufficient descent property

Flrean) = F) < =57 IV B,

which in turn guarantees global convergence.
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Proof of Lemma 2. Note that
1
mi(p) = mi(0) = ge p+ 5p " Bep.

Consider the three cases in the Cauchy point calculation in (1).
Case 1: g Brgx < 0. Then p§ = p? = ﬁgk. Hence

2

i (pC) — my(0) = — [1gill Ay + =

A
2gk kgk
N

<0
< — [Igxll A

1 : 18kl
< —||gk||-m1n{Ak, .
2 || Bx ||

Case 2: g Brgr > 0 and P < 1. Then:

Mgl Brgr
_ s’ c_ g l&d” ||8k||2
Aigyl Brgx 8¢ Bk
Hence
lgell® 1 llgell*
mi(pi) — m(0) = — + =
& 8¢ Begk  28{ Brgx
_ 1 lgell*
28k By g
2
< _EM _ _1 || 8|l

-
2|BIl; ll8«ll 2Bl

i sl
<~ il min {82 .
2 Il 1B,

Case 3: g, Brgr > 0 and g > 1. The latter implies that g Bygx < Hng and thus p¢ = p?.

Mgl Biegk
Hence
1 A?
m(pf) = mi(0) = — |lgill A+ 37 P LB
k -4
1
<~ Nl &
1 : |8kl
g : .
<~ il -min {85
In all three cases, we establish the desired inequality. O

The theorem below, which follows trivially from Lemma 2, quantifies the decrease obtained
by any solution that achieves some constant fraction of the progress by the Cauchy point.
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Theorem 1 (Theorem 4.4 in Nocedal-Wright). Let py be a vector such that || py|| < Ay and

m(pe) = me(0) < ¢ (my (pf) —me(0)), @
where ¢ > 0 is some constant. Then
c .
() = me(0) < = g min { &, 851} ©)
2 || Bx||

Theorem 1 can be viewed as a “descent lemma” for TR methods. The exact minimizer of the
TR subproblem (P, ), the dogleg method and the 2D subspace minimization method all satisfy (2)
and in turn (3) with ¢ = 1.

2.2 Convergence to stationary points

Recall the generic TR algorithm.

Algorithm 1 Trust Region

Input: A > 0 (largest radius), Ag € (0, A) (initial radius), 7 € [0,1/4) (acceptance threshold)
fork=0,1,2,...
px = argmin, ., m(p) (or approximate minimizer)

) —fCrtpy)
Pk = T =me (o)

if o < %: \\ insufficient progress

1
A1 = =Dy \\ reduce radius

4
else:
if pr > 2 and ||px|| = Ax: \\ sufficient progress, active trust region
Agyr1 = min {ZAk,A} \\ increase radius
else: \\ sufficient progress, inactive trust region

A1 =A \\ keep radius
if o > 1 \\ sufficient progress
Xk+1 = Xk + Px \\ accept step
else: \\ insufficient progress
g1 = Xk \\ reject step

end for

Two types of global convergence guarantees can be proved depending on the value of #:

1. 7 = 0 (always accept if there is any progress). Then {g;} has a limit point at zero, i.e.,
liminfy o ||kl = O.



UW-Madison CS/ISyE/Math/Stat 726 Spring 2023

2. 171 > 0 (reject steps with low progress). Then we have the stronger result that g, — 0.

Below we focus on the first case.
Consider the level set

S:= {x ERY| f(x) < f(xo)}.
Define an open neighborhood of S by
S(Rp) :={x | ||x —y|| < Ro for somey € S}.

Illustration below.

SCRo)

Assumptions:
1. Vk:||Bll, < B < 0.
2. fis bounded below on S.
3. fis smooth (i.e., has Lipschitz continuous gradient) on S(Ry) for some Ry > 0.

For generality, we allow constant-factor violations of the trust region bound; that is, we only re-
quire that

llpell < yAy, for some y > 1. )

Theorem 2 (Theorem 4.5 in Nocedal-Wright). Let 7 = 0 in Algorithm 1. Suppose that the assumptions
stated above are satisfied, and the step py satisfies the sufficient progress condition (3) and the trust region
bound (4) for all k. Then
liminf || gx|| = 0.
k—o0
Proof outline:

1. Assume for the purpose of contradiction that there exists € > 0, K > 0 such that for all k > K:
gl = €.

2. Then there exists A > 0 such that for all k > K: Ay > min {Ag,A/4} > 0.
3. Contradict statement 2 by showing limy_,+, Ay = 0. There are two cases:

(a) px > i for some infinite sequence of k, in which case we show that f decreases by some
constant times Ay, so it must be that Ay — 0, as f is bounded below.

6
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(b) px < 1 for all k sufficiently large. Then by Algorithm 1, A is reduced by a factor 1/4,
so limy_, A = 0.

Now the formal proof.

Proof of Theorem 2. Recall that

1
mi(p) = fe+8c P+ 5p " Bep,

where fk = f(xk) and 8k = Vf(xk), and mk(O) = fk-
Suppose that ||pk|| < Ro, so that xy, xx + px € S(Ro). By assumption, there exists f1 such that
f is B1-smooth on S(Rp). Also note that

op—1] = fOo) = f(xe+pe) — mi(0) —mu(pie) | _ | m(pic) — f (xi + px)
Pk — ’ - - - ’ (5)
mye(0) —my(px) — mi(0) — mi(pr) myi(0) — my(px)
where we use f(x;) = my(0). Let us control the numerator and denominator on the RHS.
By Taylor’s Theorem, we have
1
Flon+pe) = fG) + [ (T f ot tpe), i)
We can write my(py) as
T 1+ ! 1 T
mi(pe) = fi+ 8k P+ 5Pk Bepre = f(x) + /0 (Vf(xi), pr) dt + 5 pe Bipe
It follows that
1 1
mi(pr) — f (i + pi)| < ‘/0 (Vf(xx+tpe) = Vf(xx), pr) df’ +5 ‘kakak‘
1
< BU el + 5 1Bl el r-smoothness of f
+
<P IBill, <
_|_
<Brlog Ipl <986 ®
For the purpose of contradiction, assume that there exists € > 0 and K > 0 such that
IVFo)ll = ligell =€, Vk=K.
In this case, the sufficient progress condition (3) implies
_ > . 18kl
[mx(0) — mx(pi) | = 1 || gkl min ¢ Ay, 1Bl
€
> clemin{Ak,} . (7)
1Bkl
Combining (5), (6) and (7), we obtain
22
AL (B1L+ B)
-1 < > K.
e —1] = 2ciemin {Ag, e/B}’ Vkz K

7
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We want to upper bound the RHS. Define:

8= min{ g )

which satisfies cl€ €
< 1
A< ————rnr < —
Y (B1+Pp) ~ B
since c; < 1,7 > 1,B1 > 0. Therefore, for all Ay < A, we have min {Ak/ %} = Ay, hence

272
<’YAk(,31+,3) <ﬂ§

1 L Vk > K,
L vy =

1
2/

where we use W < A. It follows that p; > 1. By the workings of Algorithm 1, we have
Ary1 > A whenever Ay < A. Thus, Ay can decrease (by a factor of %) only if Ay > A, and therefore
we conclude that _

A
Akzmin{AK,4}, Vk > K. (8)

Consider two cases:
(a) Suppose that there exists an infinite subsequence K of {K,K+1,K+2,...} such that p; >
%,Vk € K. Then

f(xxr1) = f(xx) = px (mi(px) — mi(0))
< 3 ml0) ~ my(po))

< —C4—1emin {Ak,;} .

Since f is bounded below, it must be limy_,« rex Ax = 0, which is a contradiction to (8).

(b) Suppose that no such K exists. Therefore p; < I must hold for all sufficiently large k. But
from Algorithm 1, this means that Ay ; = %Ak, which implies limy_,., Ay = 0, again contra-
dicting (8).

We conclude that the original assertion ||gx|| > €, Vk > K must be false, hence liminfy_, ||gx|| =
0. O
Option reading;:
¢ When n > 0, we have g — 0. See Theorem 4.6 in Nocedal-Wright.

* For small-scale problems, we may solve the TR subproblem miny,<a, 7(p) more accu-
rately using iterative methods. See Section 4.3 in Nocedal-Wright.
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3 Local convergence of TR-Newton method

The results discussed so far hold for general By. We now specialize to TR methods that use the
true Hessian By = V2f(xy) for all sufficiently large k. (We refer to these methods as TR-Newton.)
In this case, we expect that the TR bound ||pk|| < Ay becomes inactive near the minimizer of f
and thus approximate solution to the TR subproblem (P,,,) becomes similar to the Newton step

pi = = VA (x0) TV S ().
The theorem below establishes superlinear local convergence of TR-Newton.

Theorem 3 (Theorem 4.9 in Nocedal-Wright). Let f be twice continuously differentiable (with pB1-
Lipschitz gradients and L-Lipschitz Hessians) in a neighborhood of a local minimizer x* satisfying V f (x*) =
0, V2f(x*) = 0. Suppose that

1. {xy} converges to x*;
2. for all k sufficiently large, the TR algorithm with By, = V£ (x;) chooses py such that

(a) the sufficient progress condition (3) holds, and

(b) py is asymptotically similar to pY = —V?f (xx) "1 g whenever ||pl|| < % ie.,

v ] = o2 o
Then the TR bound becomes inactive for all sufficiently large k and the convergence of {xy} to x* is super-

linear.

Proof outline: Show that for all sufficiently large k, pi is close to 1, so Algorithm 1 with keep

the TR radius Ay large. Consequently, we have | p}|| < %, so (9) holds, in which case we can

invoke the generic result in Lecture 21, Theorem 2 to establish the superlienar convergence.
Proof of Theorem 3. We want bound

f () = fOox + pr) = (m(0) — m(pr))
. (10)
myc(0) — m(pr)
First consider the numerator. Suppose that k is large enough.

lox — 1| =

o If [ Y]] < 3 then (9) applies, hence [|pi|| < [[px — || + [[P¥]| < 2]|p¥'[l-

o If |pN|| > %, then ||pil] < Ap < 2PN

In both cases, we have

Ipell < 2| = 2| V2r 0 g, < 2[00 7 el

Pl

Hence |8kl > sreepiadmy;

. Plugging this bound into the sufficient progress condition (3), we
obtain

my(px) — my(0)

< — ¢1 ]| gk]| min {Ak’ HV!?EL)H}

[Pl . el }
>~ C12 Hvzf(xk)_lH min HpkH ’ 2 HVZf(xk)_lu Hsz(xk)II . Ak = HpkH

- o |lpell® . - oz _
41V G 2192 (ko) oI
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When x; is sufficiently close to x*, we have V2 f(x;) ~ V2f(x*). Hence (by continuity of Hessian)
C1 > 1
4(1V2f () IV ()| BIVRF(r) TP I V2 () |

We conclude that

m(pr) — me(0) < —c3 || pil)? for all sufficiently large k.

We next bound the denominator of the RHS of (10):

|f(xx) — f(xx + pr) — (mi(0) — mye(pr))|
1 1 1
- ’—ngPk -5 /0 p,;rvzf(xk + tpy) prdt + g,;rpk + /0 kaVZf(xk)pkdt Taylor’s Theorem

1 1
= ’2 /O pi [V2f (i + tpe) — V£ ()] Pkdt’

1
< | I+ ) = P21 el Lipschitzness of V2f

<Ll pi|

L 3
<— ekl

Combining the last two bounds with (10), we obtain

(L/4) lpel® L LA

o1 < EIPIE Ly < B

c3 || pll c3 c3
LA,
>1—-—.
= k= 4C3

Therefore, Algorithm 1 will keep Ay bounded away from zero. On the other hand, as {x;} — x*,
we must have ||pl|| = || V2f (xx) 8| — 0 since gx — 0. Thus, we have ||p}|| < 2 and thus (9)
holds. In this case, we have

ol < (o= 2| + ¥ < @+ o) || < B

so the TR constraint is eventually inactive. Moreover, Theorem 2 and Claim 1 in Lecture 21 ensures
that when (9) holds, we have superlinear convergence. O

Remark 1. In fact, “reasonable” TR methods with By = V2f(x;) will eventually use py = pY and
therefore converge quadratically. In particular, this holds for the dogleg method, 2D subspace
minimization and other approximate algorithm for solving the TR-subproblem min <, mx(p)-

10
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