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Lecture 27: Online Convex Optimization and Mirror Descent

Yudong Chen

Reading:

• Chapter 21 of Duchi’s notes.

• Xinhua Zhang, short notes on mirror descent,

• Elad Hazan, “Introduction to Online Convex Optimization",

1 Online Convex Optimization

The setup can be described as a two-player sequential game:

• Let X ⊆ Rd be a convex parameter space.

• At each time t, player 1 (the learner) chooses some xt ∈ X .

• Player 2 (the adversary, or nature) then chooses a loss function ft : X → R, where ft is convex.

Note that the learner commits to xt before seeing ft, whereas the adversary may adapt its choice
of ft to x1, . . . , xt. The goal for the learner is to minimize the average regret (or optimality gap),
defined as

1
T

T

∑
t=1

( ft(xt)− ft(x∗)) ,

where x∗ := argminx∈X ∑T
t=1 ft(x) is the best fixed decision in hindsight.

1.1 Examples

Here are some examples of problems that fall into the framework of online convex optimization.

1. Online support vector machine: At each time t, the learner picks a vector xt ∈ Rd. Then, a
data point (at, yt) ∈ Rd × {±1} is revealed, and the learner incurs loss ft(xt), where ft(x) =
max{1 − yt ⟨x, at⟩ , 0}. (This loss function is called the hinge loss.)

2. Online logistic regression: Same setup, except now the loss function is ft(x) = log
(

1 + e−yt⟨x,at⟩
)

.
(This is the logistic loss.)

3. Expert prediction/adversarial bandit: There are d experts/arms. At each time t, each expert
makes a prediction (for example “I predict the stock market will go up tomorrow”). At each
time t, the learner chooses a weight vector xt = (xt1, . . . , xtd), where

xtj = weight for expert j = probability of pulling arm j.
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So the parameter space is X = ∆d := {x ∈ Rd : ∑j xj = 1, xj ≥ 0}, which is the probability
simplex in Rd. Then losses

ltj = I{expert j is wrong at time t} = loss of arm j at time t

are revealed, and the learner incurs loss ft(x) = ⟨x, lt⟩. Note that ∇ ft(x) = lt.

2 Online Gradient Descent

Gradient descent extends naturally to an algorithm for online convex optimization. Online gradi-
ent descent does, at each iteration t + 1:

xt+1 = PX (xt − αtgt)

= argmin
x∈X

{
⟨gt, x⟩+ 1

2αt
∥x − xt∥2

2

}
.

where αt is the step size and gt ∈ ∂ ft(xt) is a subgradient of ft at xt. (If ft is differentiable, then
gt = ∇ f (xt).)

3 Bregman Divergence

We will next see how to extend gradient descent to a more general algorithm. First, we will need to
introduce the notion of Bregman divergence. Let ψ : Rd → R be a differentiable convex function.

Definition 1 (Bregman Divergence). The Bregman divergence associated with ψ is a function
Bψ : Rd × Rd → R defined by

Bψ(x, y) := ψ(x)− ψ(y)− ⟨∇ψ(y), x − y⟩

Remark 1. By the convexity of ψ, the Bregman divergence Bψ is always non-negative. One can
think of Bψ(x, y) as a measure of “distance” between x and y; however, the Bregman divergence
is not necessarily symmetric or satisfies the triangle inequality.

3.1 Examples

1. Euclidean distance. Let ψ(x) = 1
2 ∥x∥2

2. Then Bψ(x, y) = 1
2 ∥x − y∥2

2.

2. Mahalanobis distance. Let ψ(x) = 1
2 x⊤Ax =: 1

2 ∥x∥2
A, where A ≽ 0.

Then Bψ(x, y) = 1
2 (x − y)⊤A(x − y) = 1

2 ∥x − y∥2
A.

3. KL-divergence. Let ψ(x) = ∑d
j=1 xj log xj be the negative entropy. Note that ψ is convex on

Rd
+.

Then Bψ(x, y) = ∑d
j=1 xj log xj

yj
= DKL (x, y) for all x, y ∈ ∆d.
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4 Online Mirror Descent (OMD)

This is a generalization of gradient descent using Bregman divergences. At iteration t:

xt+1 = argmin
x∈X

{
⟨gt, x⟩+ 1

αt
Bψ(x, xt)

}
(1)

Remark 2. ⟨gt, x⟩+ 1
αt

Bψ(x, xt) is convex in x. Hence this is a convex optimization problem.

4.1 Special cases of OMD

Gradient descent ψ(x) = 1
2 ∥x∥2

2

Exponentiated gradient descent This is online mirror descent with X = ∆d, ψ(x) = ∑j xj log xj,
and Bψ(x, y) = DKL (x, y). At iteration t:

xt+1 = argmin
x∈X

{
⟨g, x⟩+ 1

αt
DKL (x, xt)

}
.

To explicit calculate xt+1, we write the Lagrangian:

L(x, λ, τ) = ⟨g, x⟩+ 1
α

d

∑
j=1

xj log
xj

xt,j
− ⟨λ, x⟩+ τ (⟨I, x⟩ − 1) .

Here, λ ∈ Rd is the multiplier for the constraint x ≥ 0 and τ ∈ R is the multiplier for the constraint
⟨I, x⟩ = 1. Taking ∂

∂x L(x, λ, τ) = 0 gives

xt+1,j = xt,j exp
(
−αgj + λjα − τα − 1

)
> 0.

Hence the constraint x ≥ 0 is inactive, which implies λ = 0. We choose τ to normalize x, giving

xt+1 =

(
xt,i exp(−αtgt,i)

∑d
j=1 xt,j exp

(
−αtgt,j

))
i=1,...,d

(2)

∝

(
xt,i exp

(
−

t

∑
k=1

αkgk,i

))
i=1,...,d

(3)

= soft-argmin

{
t

∑
k=1

αkgk,i, i = 1, . . . , d

}
. (4)

Remark 3. In the context of the expert problem, gk,i is the loss of expert i at time k. Hence, ∑t
k=1 gk,i

is the total loss of expert i up to time t. Hence exponentiated gradient descent favors experts with
low loss, but still assigns positive weight to every expert. This algorithm can thus be interpreted
as a smoothed version of “follow the leader", where the weights are updated in an multiplicative
fashion. (Variants of) exponentiated gradient descent is also known as multiplicative weight up-
date (MWU), follow-the-regularized-leader (FTRL), fictitious play (FP), Hedge algorithm, and
entropic mirror descent.
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5 Analysis of Online Mirror Descent

We recall some definitions.

Definition 2 (Strong convexity). ψ is strongly convex with respect to ∥·∥ if , for all y, x:

ψ(x)− ψ(y)− ⟨g, x − y⟩ ≥ 1
2
∥x − y∥2 , for all g ∈ ∂ψ(y).

This is equivalent to Bψ(x, y) ≥ 1
2 ∥x − y∥2 by definition of Bregman divergence.

Example 1. Let ψ(x) = ∑j xj log xj be negative entropy. Then by Pinsker’s inequality, we have

Bψ(x, y) = DKL (x, y) ≥ 1
2
∥x − y∥2

1 . (5)

In other words, the negative entropy is strongly convex with respect to the ℓ1 norm.

Definition 3 (Dual norm). The dual norm of ∥·∥ is the norm ∥·∥∗ defined by

∥y∥∗ = sup
x:∥x∥≤1

⟨x, y⟩ .

Example 2. The dual norm of ∥·∥2 is ∥·∥2. The dual norm of ∥·∥∞ is ∥·∥1. The dual norm of ∥·∥nuc
(nuclear norm) is ∥·∥op (operator norm).

Theorem 1. Suppose that ψ is strongly convex with respect to ∥·∥ with dual norm ∥·∥∗. Then online
mirror descent with step size αt ≡ α satisfies

T

∑
t=1

[ ft(xt)− ft(x∗)] ≤ 1
α

Bψ(x∗, x1) +
α

2

T

∑
t=1

∥gt∥2
∗ .

Proof. Recall that xt+1 = argminx∈X
{
⟨gt, x⟩+ 1

α Bψ(x, xt)
}

. By the optimality condition for con-
strained optimization (negative gradient lies in the normal cone), we have

0 ≤
〈

gt +
1
α

∂

∂x
Bψ(x, xt)

∣∣∣∣
x=xt+1

, x∗ − xt+1

〉

=

〈
gt +

1
α
(∇ψ(xt+1)−∇ψ(xt)) , x∗ − xt+1

〉
.

Therefore, we have

ft(xt)− ft(x∗) ≤ ⟨gt, xt − x∗⟩ convexity of ft

= ⟨gt, xt+1 − x∗⟩+ ⟨gt, xt − xt+1⟩

≤ 1
α
⟨∇ψ(xt1)−∇ψ(xt), x∗ − xt+1⟩+ ⟨gt, xt − xt+1⟩ last display equation

=
1
α

[
Bψ(x∗, xt)− Bψ(x∗, xt+1)− Bψ(xt+1, xt)

]
+ ⟨gt, xt − xt+1⟩ ,
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where the last step follows from direct calculation using definition and is sometimes known as the
“three-point identity” (HW2 Q3.3). Summing over t = 1, . . . , T, the sum telescopes, and we get

T

∑
t=1

( ft(xt)− ft(x∗)) ≤ 1
α

[
Bψ(x∗, x1)− Bψ(x∗, xT+1)

]
+

T

∑
t=1

[
−1

α
Bψ(xt+1, xt) + ⟨gt, xt − xt+1⟩

]
≤ 1

α
Bψ(x∗, x1) +

T

∑
t=1

[
−1

α
Bψ(xt+1, xt) + ⟨gt, xt − xt+1⟩

]
To control the last RHS term, we observe that

⟨gt, xt − xt+1⟩ ≤ ∥gt∥∗ ∥xt − xt+1∥ definition of dual norm

≤ α

2
∥gt∥2 +

1
2α

∥xt − xt+1∥2 ab ≤ 1
2
(a2 + b2)

≤ α

2
∥gt∥2

∗ +
1
α

Bψ(xt+1, xt) strong convexity of ψ.

Combining pieces, we obtain the desired regret bound

T

∑
t=1

( ft(xt)− ft(x∗)) ≤ 1
α

Bψ(x∗, x1) +
α

2

T

∑
t=1

∥gt∥2
∗ .

6 Applications

6.1 Online (sub)-gradient descent

Let ψ(x) = 1
2 ∥x∥2

2. Then ψ is strong convex with respect to ∥·∥2, and the dual norm is ∥·∥2.
Suppose each ft is L-Lipschitz, which implies ∥gt∥2 ≤ M. Then the regret bound is

T

∑
t=1

( ft(xt)− ft(x∗)) ≤ 1
2α

∥x∗ − x1∥2
2 +

α

2
T · M2.

Choosing α =
∥x∗−x1∥2

M
√

T
to minimize the RHS gives

1
T

T

∑
t=1

( ft(xt)− ft(x∗)) ≤ ∥x∗ − x1∥2 M√
T

.

Remark 4. The above bound implies an O( 1√
T
) convergence rate for the offline setting where all

ft ≡ f . In particular, letting x̄ = 1
T ∑T

t=1 xt, we have

f (x̄)− f (x∗) ≤ 1
T

T

∑
t=1

[ f (xt)− f (x∗)] ≤ ∥x∗ − x1∥2 M√
T

,

where the first step above is by Jensen’s inequality. This recovers the result from Lecture 17 on
subgradient descent.
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6.2 Expoentiated gradient descent

Let X = ∆d, and ψ(x) = ∑j xj log xj be the negative entropy. Then ψ is strongly convex with
respect to ∥·∥1, with dual norm ∥·∥∞. Then the regret bound is

T

∑
t=1

( ft(xt)− ft(x∗)) ≤ 1
α

DKL (x∗, x1) +
α

2

T

∑
t=1

∥gt∥2
∞ .

If in addition we take the initial iterate x1 = ( 1
d , . . . , 1

d ) to be the uniform distribution, then one can

verify that DKL (x∗, x1) ≤ log d. Also, set α =

√
log d

2T maxt∥gt∥2
∞

. Then the average regret is

1
T

T

∑
t=1

( ft(xt)− ft(x∗)) ≤

√
log d · maxt ∥gt∥2

∞
T

. (6)

Remark 5. Compared to online gradient descent, the dependence on the gradients gt is maxt ∥gt∥∞
instead of maxt ∥gt∥2. Thus exponentiated gradient descent can do better than gradient descent
when the gradients gt are small in magnitude and not sparse.

6.3 Expert problem

Recall that ltj is the loss of expert j at time t, and that gt = lt ∈ {0, 1}d. Thus ∥gt∥∞ ≤ 1. Plugging
this into the bound for exponentiated gradient descent gives

1
T

T

∑
t=1

( ft(xt)− ft(x∗)) ≤
√

log d
T

Remark 6. This regret bound is optimal for the expert problem. In comparison, gradient descent

would get
√

d
T regret, which has an exponentially larger dependence on the dimension d.

7 Extensions

1. We chose our step size α to be proportional to 1√
T

. This requires the time horizon to be

known to the algorithm. If T is not known, one can use a varying step size αt = 1√
t

and
prove essentially the same guarantees (under a slightly stronger boundedness assumption;
see Duchi’s notes.)

2. Improve bounds. If more is known about the loss function ft, then better regret bounds (in
the online setting) and convergence rates (in the offline setting) can be obtained.

• ft is smooth (gradient is Lipschitz): We have an improvement
√

T → O(1) in regret,
which translates to an improvement 1√

T
→ 1

T in rate.

• ft is strongly convex: We have an improvement
√

T → log T in regret, and hence 1√
T
→

log T
T in rate.

See Xinhua Zhang’s notes for details.

6



UW-Madison CS/ISyE/Math/Stat 726 Spring 2023

3. So far, we assumed that we observe the losses of all the experts/arms, even those we did
not choose/pull. This is the full information setting. Next week, we will look at the “bandit
information” setting, where we only observe the loss of the expert/arm that we choose/pull,
that is, we only see one entry of ∇ ft = gt = lt.
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