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Lecture 27: Online Convex Optimization and Mirror Descent

Yudong Chen

Reading:
¢ Chapter 21 of Duchi’s notes.
¢ Xinhua Zhang, short notes on mirror descent,

¢ Elad Hazan, “Introduction to Online Convex Optimization",

1 Online Convex Optimization

The setup can be described as a two-player sequential game:
e Let X C IR be a convex parameter space.
¢ Ateach time ¢, player 1 (the learner) chooses some x; € X.
* Player 2 (the adversary, or nature) then chooses a loss function f; : X — R, where f; is convex.

Note that the learner commits to x; before seeing f;, whereas the adversary may adapt its choice
of f; to x1,...,x;. The goal for the learner is to minimize the average regret (or optimality gap),

defined as
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where x* := argmin, _ 5 YL, fi(x) is the best fixed decision in hindsight.

1.1 Examples

Here are some examples of problems that fall into the framework of online convex optimization.

1. Online support vector machine: At each time ¢, the learner picks a vector x; € R%. Then, a
data point (a;,y;) € R? x {#1} is revealed, and the learner incurs loss f;(x;), where f;(x) =
max{1 — y; (x,a;),0}. (This loss function is called the hinge loss.)

2. Online logistic regression: Same setup, except now the loss function is f;(x) = log (1 + e Yrtxa >> .
(This is the logistic loss.)

3. Expert prediction/adversarial bandit: There are d experts/arms. At each time t, each expert
makes a prediction (for example “I predict the stock market will go up tomorrow”). At each
time ¢, the learner chooses a weight vector x; = (x4, ..., X;;), where

xtj = weight for expert j = probability of pulling arm j.


http://web.stanford.edu/class/stats311/lecture-notes.pdf
http://users.cecs.anu.edu.au/~xzhang/teaching/bregman.pdf
https://ocobook.cs.princeton.edu/OCObook.pdf
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So the parameter space is X = Ay := {x € R?: Yjxj =1, x; > 0}, which is the probability
simplex in R?. Then losses

li; = I{expert j is wrong at time t} = loss of arm j at time ¢

are revealed, and the learner incurs loss f;(x) = (x,1;). Note that V f;(x) = I;.

2 Online Gradient Descent

Gradient descent extends naturally to an algorithm for online convex optimization. Online gradi-
ent descent does, at each iteration ¢ + 1:

Xt+1 = PX(xt - Oétgt)

. 1 2
— argmin { (g1,%) + 5 ¥ = %[ ¢
xeX t

where a; is the step size and g; € df;(x;) is a subgradient of f; at x;. (If f; is differentiable, then
gt = Vf(x).)

3 Bregman Divergence

We will next see how to extend gradient descent to a more general algorithm. First, we will need to
introduce the notion of Bregman divergence. Let ¢ : RY — R be a differentiable convex function.

Definition 1 (Bregman Divergence). The Bregman divergence associated with ¥ is a function
By : R? x R — R defined by

By(x,y) = p(x) = ¢(y) — (Vo (), x —v)
Remark 1. By the convexity of ¢, the Bregman divergence By is always non-negative. One can
think of By (x,y) as a measure of “distance” between x and y; however, the Bregman divergence
is not necessarily symmetric or satisfies the triangle inequality.
3.1 Examples
1. Euclidean distance. Let y(x) = 1 ||x||§ Then By (x,y) = 5 ||x — yH%

2. Mahalanobis distance. Let (x) = 1xT Ax =: 1 ||x||3, where A = 0.
Then By(x,y) = 3(x —y) TA(x —y) = 3 [|lx — yll.

3. KL-divergence. Let ¢(x) = Z}i:l x;jlog x; be the negative entropy. Note that i is convex on
R4
Then By(x,y) = Z;flzl X; log;—; = Dxr (v, y) forall x,y € A,.
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4 Online Mirror Descent (OMD)

This is a generalization of gradient descent using Bregman divergences. At iteration t:

. 1
X¢4+1 = argmin { (g1, x) + —By(x, xt)} (1)
xeX L2

Remark 2. (g, x) + %Blp(x, x¢) is convex in x. Hence this is a convex optimization problem.

4.1 Special cases of OMD

Gradient descent ¢(x) = 1 ||x|

Exponentiated gradient descent This is online mirror descent with X = Ay, (x) = }; x; log xj,
and By (x,y) = Dk (x,y). At iteration ¢:

. 1
X¢+1 = argmin {(g,x) + “—tDKL (x, xt)} .

xeX

To explicit calculate x; 1, we write the Lagrangian:

I (L) —1).

1 d
L(x, A7) = (g,x)+ =) xjlog
ris Xt

Here, A € R? is the multiplier for the constraint x > 0 and 7 € R is the multiplier for the constraint
(I x) = 1. Taking 2 L(x, A, ) = 0 gives
Xty1,j = Xtj€xp (—ucgj +Ajx — T — 1) > 0.

Hence the constraint x > 0 is inactive, which implies A = 0. We choose T to normalize x, giving

XpiexXpl—otQri
Xpp1 = ( d L) ) i
Yo xejexp (—agey) ),y

t
N (xt,i exp (- ) (ngk,i>) 3)
k=1 i=1,.d

t
= soft-argmin { Z a8k, 1=1,... ,d} . 4)

k=1

Remark 3. In the context of the expert problem, gy ; is the loss of expert i at time k. Hence, Y";_; g ;
is the total loss of expert i up to time t. Hence exponentiated gradient descent favors experts with
low loss, but still assigns positive weight to every expert. This algorithm can thus be interpreted
as a smoothed version of “follow the leader", where the weights are updated in an multiplicative
fashion. (Variants of) exponentiated gradient descent is also known as multiplicative weight up-
date (MWU), follow-the-regularized-leader (FTRL), fictitious play (FP), Hedge algorithm, and
entropic mirror descent.
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5 Analysis of Online Mirror Descent

We recall some definitions.

Definition 2 (Strong convexity). ¢ is strongly convex with respect to ||-|| if , for all y, x:

1
P() =) = (& x —y) = 5 [x—yl*, forallg € ap(y).

This is equivalent to By(x,y) > 1 ||x — y||* by definition of Bregman divergence.

Example 1. Let ¢(x) = }; x; log x; be negative entropy. Then by Pinsker’s inequality, we have

1 2
By(x,y) = Dxu(vy) 2 5 llx =yl 5)
In other words, the negative entropy is strongly convex with respect to the /; norm.

Definition 3 (Dual norm). The dual norm of ||-|| is the norm ||-||, defined by

lyll, = sup (x,y).

x:xf <1

Example 2. The dual norm of ||-||, is ||-||,. The dual norm of ||-||, is ||-||;- The dual norm of ||-||
(nuclear norm) is ||-||,, (operator norm).

nuc

Theorem 1. Suppose that i is strongly convex with respect to ||-|| with dual norm ||-||,. Then online
mirror descent with step size x; = w satisfies
T 1 . o T )
Y i) — filx")] < By, x) + 5 3 il
t=1

t=1

Proof. Recall that x;+1 = argmin__, {(gt,x) + 1By(x,x;)}. By the optimality condition for con-
strained optimization (negative gradient hes in the normal cone), we have

*
;X = xt+1>
X=Xt+1

= (gt & (T(ra) = V(o)) o~ ).

10
< -2
0< <gt +o axBlp(X,xt)

Therefore, we have

fi(xe) — fe(x™) < (ge, x¢ — x™) convexity of f;
= (8t Xep1 — X*) + (gt Xt — Xp41)
1
< " (Vp(xy) — VP(xp), X" — xp41) + (96, Xe — Xp41) last display equation

1 * *
= 2 [B¢(X ,Xt) - Bl/l(x ,xt+1) - Bl/l(xt+l/xt)] + <gt,Xt - xt+1> ’
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where the last step follows from direct calculation using definition and is sometimes known as the
“three-point identity” (HW2 Q3.3). Summing over t =1, ..., T, the sum telescopes, and we get

1

T
* * ]-
" [By(x*,x1) — By(x*, x741)] + E [—“qu(xtﬂlxt) + (e, Xt — Xp41)

IN

T
Y (filxe) = fr(x™))

=1
1 LN |
S&sz(x X1 +Z —*Blp(xtﬂ,xt) (St Xt — Xp41)
=1

To control the last RHS term, we observe that

(g, — xp1) < ||Qell, Mlxe — x4 definition of dual norm
< 5 lgell” + 57 lxe = xea] ab < E(a2+b2)
1
< % ||gtHi + &Bl,b(xt—o—l/xt) strong convexity of 1.

Combining pieces, we obtain the desired regret bound

T 1 M T )
L () = () <GBy, )+ 5 Ll

=1
O
6 Applications
6.1 Online (sub)-gradient descent
Let ¢(x) = 3 ||x||§ Then 1 is strong convex with respect to ||-||,, and the dual norm is |-||,.

Suppose each f; is L-Lipschitz, which implies ||g¢||, < M. Then the regret bound is

L 14
Y (i)~ filx) < o I8 = w2+ 5T M2

t=1

% to minimize the RHS gives

Choosing & = *—

1 & |x* —xq]|, M
_ E X < 4 “Te
T =1 ft t )) N \/T

Remark 4. The above bound implies an O(\iﬁ) convergence rate for the offline setting where all

ft = f. In particular, letting ¥ = % Zthl x;, we have

F8) = £) < 17 - £()) < Tt

where the first step above is by Jensen’s inequality. This recovers the result from Lecture 17 on
subgradient descent.
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6.2 Expoentiated gradient descent

Let X = Ay, and ¥(x) = };x;logx; be the negative entropy. Then ¥ is strongly convex with
respect to ||-||;, with dual norm ||-||,. Then the regret bound is

T . 1 . o T )
) (filxe) = fi(x") < D (x%x1) + 5 ) gl

t=1 t=1

If in addition we take the initial iterate x; = (%, ., d) to be the uniform distribution, then one can

verify that Dy (x*,x1) < logd. Also, seta = ﬁ. Then the average regret is
1 : * log d - max io
7 L (filx) = filx") g\/ 5 ma gl o
t=1

Remark 5. Compared to online gradient descent, the dependence on the gradients g; is max; ||g¢||
instead of max; ||g¢||,. Thus exponentiated gradient descent can do better than gradient descent
when the gradients g; are small in magnitude and not sparse.

6.3 Expert problem

Recall that I;; is the loss of expert j at time t, and that g; = [; € {0,1}". Thus ||g;
this into the bound for exponentiated gradient descent gives

< 1. Plugging

o

1< logd
l <
T; (fe(xt) X)) <\

Remark 6. This regret bound is optimal for the expert problem. In comparison, gradient descent

would get \/% regret, which has an exponentially larger dependence on the dimension d.

7 Extensions

. . 1 . . . .
1. We chose our step size a to be proportional to TT This requires the time horizon to be

known to the algorithm. If T is not known, one can use a varying step size a; = —- and

R
prove essentially the same guarantees (under a slightly stronger boundedness assumption;
see Duchi’s notes.)

2. Improve bounds. If more is known about the loss function f;, then better regret bounds (in
the online setting) and convergence rates (in the offline setting) can be obtained.

* f; is smooth (gradient is Lipschitz): We have an improvement /T — O(1) in regret,
which translates to an improvement T — 1 in rate.

1

e f;is strongly convex: We have an improvement v/T — log T in regret, and hence i

log T .

—

in rate.

See Xinhua Zhang’s notes for details.
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3. So far, we assumed that we observe the losses of all the experts/arms, even those we did
not choose/pull. This is the full information setting. Next week, we will look at the “bandit
information” setting, where we only observe the loss of the expert/arm that we choose/pull,
that is, we only see one entry of Vf; = g1 = I;.
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