Lecture 27: Online Convex Optimization and Mirror Descent

Yudong Chen

Reading:

- Chapter 21 of Duchi's notes.
- Xinhua Zhang, short notes on mirror descent,
- Elad Hazan, "Introduction to Online Convex Optimization",

1 Online Convex Optimization

The setup can be described as a two-player sequential game:

- Let $\mathcal{X} \subseteq \mathbb{R}^d$ be a *convex* parameter space.
- At each time *t*, player 1 (the *learner*) chooses some $x_t \in \mathcal{X}$.
- Player 2 (the *adversary*, or *nature*) then chooses a loss function $f_t : \mathcal{X} \to \mathbb{R}$, where f_t is convex.

Note that the learner commits to x_t **before** seeing f_t , whereas the adversary may adapt its choice of f_t to x_1, \ldots, x_t . The goal for the learner is to minimize the average regret (or optimality gap), defined as

$$\frac{1}{T}\sum_{t=1}^{T} (f_t(x_t) - f_t(x^*)),$$

where $x^* := \operatorname{argmin}_{x \in \mathcal{X}} \sum_{t=1}^{T} f_t(x)$ is the best fixed decision in hindsight.

1.1 Examples

Here are some examples of problems that fall into the framework of online convex optimization.

- 1. **Online support vector machine**: At each time *t*, the learner picks a vector $x_t \in \mathbb{R}^d$. Then, a data point $(a_t, y_t) \in \mathbb{R}^d \times \{\pm 1\}$ is revealed, and the learner incurs loss $f_t(x_t)$, where $f_t(x) = \max\{1 y_t \langle x, a_t \rangle, 0\}$. (This loss function is called the *hinge loss*.)
- 2. **Online logistic regression**: Same setup, except now the loss function is $f_t(x) = \log (1 + e^{-y_t \langle x, a_t \rangle})$. (This is the *logistic loss*.)
- 3. Expert prediction/adversarial bandit: There are *d* experts/arms. At each time *t*, each expert makes a prediction (for example "I predict the stock market will go up tomorrow"). At each time *t*, the learner chooses a weight vector $x_t = (x_{t1}, \ldots, x_{td})$, where

$$x_{tj}$$
 = weight for expert j = probability of pulling arm j .

So the parameter space is $\mathcal{X} = \Delta_d := \{x \in \mathbb{R}^d : \sum_j x_j = 1, x_j \ge 0\}$, which is the probability simplex in \mathbb{R}^d . Then losses

 $l_{tj} = \mathbb{I}\{\text{expert } j \text{ is wrong at time } t\} = \text{loss of arm } j \text{ at time } t$

are revealed, and the learner incurs loss $f_t(x) = \langle x, l_t \rangle$. Note that $\nabla f_t(x) = l_t$.

2 Online Gradient Descent

Gradient descent extends naturally to an algorithm for online convex optimization. Online gradient descent does, at each iteration t + 1:

$$\begin{aligned} x_{t+1} &= P_{\mathcal{X}}(x_t - \alpha_t g_t) \\ &= \operatorname*{argmin}_{x \in \mathcal{X}} \left\{ \langle g_t, x \rangle + \frac{1}{2\alpha_t} \| x - x_t \|_2^2 \right\}. \end{aligned}$$

where α_t is the step size and $g_t \in \partial f_t(x_t)$ is a subgradient of f_t at x_t . (If f_t is differentiable, then $g_t = \nabla f(x_t)$.)

3 Bregman Divergence

We will next see how to extend gradient descent to a more general algorithm. First, we will need to introduce the notion of Bregman divergence. Let $\psi : \mathbb{R}^d \to \mathbb{R}$ be a differentiable convex function.

Definition 1 (Bregman Divergence). The **Bregman divergence** associated with ψ is a function $B_{\psi} : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ defined by

$$B_{\psi}(x,y) := \psi(x) - \psi(y) - \langle \nabla \psi(y), x - y \rangle$$

Remark 1. By the convexity of ψ , the Bregman divergence B_{ψ} is always non-negative. One can think of $B_{\psi}(x, y)$ as a measure of "distance" between x and y; however, the Bregman divergence is not necessarily symmetric or satisfies the triangle inequality.

3.1 Examples

- 1. Euclidean distance. Let $\psi(x) = \frac{1}{2} ||x||_2^2$. Then $B_{\psi}(x, y) = \frac{1}{2} ||x y||_2^2$.
- 2. Mahalanobis distance. Let $\psi(x) = \frac{1}{2}x^{\top}Ax =: \frac{1}{2} ||x||_{A}^{2}$, where $A \ge 0$. Then $B_{\psi}(x,y) = \frac{1}{2}(x-y)^{\top}A(x-y) = \frac{1}{2} ||x-y||_{A}^{2}$.
- 3. **KL-divergence.** Let $\psi(x) = \sum_{j=1}^{d} x_j \log x_j$ be the negative entropy. Note that ψ is convex on \mathbb{R}^d_+ .

Then $B_{\psi}(x,y) = \sum_{j=1}^{d} x_j \log \frac{x_j}{y_j} = D_{\text{KL}}(x,y)$ for all $x, y \in \Delta_d$.

4 Online Mirror Descent (OMD)

This is a generalization of gradient descent using Bregman divergences. At iteration *t*:

$$x_{t+1} = \operatorname*{argmin}_{x \in \mathcal{X}} \left\{ \langle g_t, x \rangle + \frac{1}{\alpha_t} B_{\psi}(x, x_t) \right\}$$
(1)

Remark 2. $\langle g_t, x \rangle + \frac{1}{\alpha_t} B_{\psi}(x, x_t)$ is convex in *x*. Hence this is a convex optimization problem.

4.1 Special cases of OMD

Gradient descent $\psi(x) = \frac{1}{2} \|x\|_2^2$

Exponentiated gradient descent This is online mirror descent with $\mathcal{X} = \Delta_d$, $\psi(x) = \sum_j x_j \log x_j$, and $B_{\psi}(x, y) = D_{\text{KL}}(x, y)$. At iteration *t*:

$$x_{t+1} = \operatorname*{argmin}_{x \in \mathcal{X}} \left\{ \langle g, x \rangle + \frac{1}{\alpha_t} D_{\mathrm{KL}} \left(x, x_t \right) \right\}.$$

To explicit calculate x_{t+1} , we write the Lagrangian:

$$L(x,\lambda,\tau) = \langle g,x \rangle + \frac{1}{\alpha} \sum_{j=1}^{d} x_j \log \frac{x_j}{x_{t,j}} - \langle \lambda,x \rangle + \tau \left(\langle \mathbb{I},x \rangle - 1 \right).$$

Here, $\lambda \in \mathbb{R}^d$ is the multiplier for the constraint $x \ge 0$ and $\tau \in \mathbb{R}$ is the multiplier for the constraint $\langle \mathbb{I}, x \rangle = 1$. Taking $\frac{\partial}{\partial x} L(x, \lambda, \tau) = 0$ gives

$$x_{t+1,j} = x_{t,j} \exp\left(-\alpha g_j + \lambda_j \alpha - \tau \alpha - 1\right) > 0.$$

Hence the constraint $x \ge 0$ is inactive, which implies $\lambda = 0$. We choose τ to normalize x, giving

$$x_{t+1} = \left(\frac{x_{t,i}\exp(-\alpha_t g_{t,i})}{\sum_{j=1}^d x_{t,j}\exp\left(-\alpha_t g_{t,j}\right)}\right)_{i=1,\dots,d}$$
(2)

$$\propto \left(x_{t,i} \exp\left(-\sum_{k=1}^{t} \alpha_k g_{k,i} \right) \right)_{i=1,\dots,d}$$
(3)

$$= \operatorname{soft-argmin}\left\{\sum_{k=1}^{t} \alpha_k g_{k,i}, \ i = 1, \dots, d\right\}.$$
(4)

Remark 3. In the context of the expert problem, $g_{k,i}$ is the loss of expert *i* at time *k*. Hence, $\sum_{k=1}^{t} g_{k,i}$ is the total loss of expert *i* up to time *t*. Hence exponentiated gradient descent favors experts with low loss, but still assigns positive weight to every expert. This algorithm can thus be interpreted as a smoothed version of "follow the leader", where the weights are updated in an multiplicative fashion. (Variants of) exponentiated gradient descent is also known as **multiplicative weight update** (MWU), **follow-the-regularized-leader** (FTRL), **fictitious play** (FP), **Hedge algorithm**, and **entropic mirror descent**.

5 Analysis of Online Mirror Descent

We recall some definitions.

Definition 2 (Strong convexity). ψ is *strongly convex* with respect to $\|\cdot\|$ if , for all y, x:

$$\psi(x) - \psi(y) - \langle g, x - y \rangle \ge \frac{1}{2} ||x - y||^2$$
, for all $g \in \partial \psi(y)$.

This is equivalent to $B_{\psi}(x, y) \ge \frac{1}{2} ||x - y||^2$ by definition of Bregman divergence.

Example 1. Let $\psi(x) = \sum_{i} x_i \log x_i$ be negative entropy. Then by Pinsker's inequality, we have

$$B_{\psi}(x,y) = D_{\mathrm{KL}}(x,y) \ge \frac{1}{2} \|x - y\|_{1}^{2}.$$
(5)

In other words, the negative entropy is strongly convex with respect to the ℓ_1 norm.

Definition 3 (Dual norm). The dual norm of $\|\cdot\|$ is the norm $\|\cdot\|_*$ defined by

$$\left\|y\right\|_{*} = \sup_{x:\|x\| \le 1} \left\langle x, y \right\rangle.$$

Example 2. The dual norm of $\|\cdot\|_2$ is $\|\cdot\|_2$. The dual norm of $\|\cdot\|_{\infty}$ is $\|\cdot\|_1$. The dual norm of $\|\cdot\|_{nuc}$ (nuclear norm) is $\|\cdot\|_{op}$ (operator norm).

Theorem 1. Suppose that ψ is strongly convex with respect to $\|\cdot\|$ with dual norm $\|\cdot\|_*$. Then online *mirror descent with step size* $\alpha_t \equiv \alpha$ *satisfies*

$$\sum_{t=1}^{T} \left[f_t(x_t) - f_t(x^*) \right] \le \frac{1}{\alpha} B_{\psi}(x^*, x_1) + \frac{\alpha}{2} \sum_{t=1}^{T} \|g_t\|_*^2.$$

Proof. Recall that $x_{t+1} = \operatorname{argmin}_{x \in \mathcal{X}} \{ \langle g_t, x \rangle + \frac{1}{\alpha} B_{\psi}(x, x_t) \}$. By the optimality condition for constrained optimization (negative gradient lies in the normal cone), we have

$$0 \leq \left\langle g_t + \frac{1}{\alpha} \frac{\partial}{\partial x} B_{\psi}(x, x_t) \right|_{x = x_{t+1}}, x^* - x_{t+1} \right\rangle$$
$$= \left\langle g_t + \frac{1}{\alpha} \left(\nabla \psi(x_{t+1}) - \nabla \psi(x_t) \right), x^* - x_{t+1} \right\rangle$$

Therefore, we have

$$\begin{aligned} f_t(x_t) - f_t(x^*) &\leq \langle g_t, x_t - x^* \rangle & \text{convexity of } f_t \\ &= \langle g_t, x_{t+1} - x^* \rangle + \langle g_t, x_t - x_{t+1} \rangle \\ &\leq \frac{1}{\alpha} \left\langle \nabla \psi(x_{t_1}) - \nabla \psi(x_t), x^* - x_{t+1} \right\rangle + \langle g_t, x_t - x_{t+1} \rangle & \text{last display equation} \\ &= \frac{1}{\alpha} \left[B_{\psi}(x^*, x_t) - B_{\psi}(x^*, x_{t+1}) - B_{\psi}(x_{t+1}, x_t) \right] + \langle g_t, x_t - x_{t+1} \rangle, \end{aligned}$$

$$\begin{split} \sum_{t=1}^{T} \left(f_t(x_t) - f_t(x^*) \right) &\leq \frac{1}{\alpha} \left[B_{\psi}(x^*, x_1) - B_{\psi}(x^*, x_{T+1}) \right] + \sum_{t=1}^{T} \left[-\frac{1}{\alpha} B_{\psi}(x_{t+1}, x_t) + \langle g_t, x_t - x_{t+1} \rangle \right] \\ &\leq \frac{1}{\alpha} B_{\psi}(x^*, x_1) + \sum_{t=1}^{T} \left[-\frac{1}{\alpha} B_{\psi}(x_{t+1}, x_t) + \langle g_t, x_t - x_{t+1} \rangle \right] \end{split}$$

To control the last RHS term, we observe that

$$\begin{aligned} \langle g_t, x_t - x_{t+1} \rangle &\leq \|g_t\|_* \|x_t - x_{t+1}\| & \text{definition of dual norm} \\ &\leq \frac{\alpha}{2} \|g_t\|^2 + \frac{1}{2\alpha} \|x_t - x_{t+1}\|^2 & ab \leq \frac{1}{2}(a^2 + b^2) \\ &\leq \frac{\alpha}{2} \|g_t\|_*^2 + \frac{1}{\alpha} B_{\psi}(x_{t+1}, x_t) & \text{strong convexity of } \psi. \end{aligned}$$

Combining pieces, we obtain the desired regret bound

$$\sum_{t=1}^{T} \left(f_t(x_t) - f_t(x^*) \right) \le \frac{1}{\alpha} B_{\psi}(x^*, x_1) + \frac{\alpha}{2} \sum_{t=1}^{T} \|g_t\|_*^2.$$

6 Applications

6.1 Online (sub)-gradient descent

Let $\psi(x) = \frac{1}{2} \|x\|_2^2$. Then ψ is strong convex with respect to $\|\cdot\|_2$, and the dual norm is $\|\cdot\|_2$. Suppose each f_t is *L*-Lipschitz, which implies $\|g_t\|_2 \le M$. Then the regret bound is

$$\sum_{t=1}^{T} \left(f_t(x_t) - f_t(x^*) \right) \le \frac{1}{2\alpha} \|x^* - x_1\|_2^2 + \frac{\alpha}{2} T \cdot M^2.$$

Choosing $\alpha = \frac{\|x^* - x_1\|_2}{M\sqrt{T}}$ to minimize the RHS gives

$$\frac{1}{T}\sum_{t=1}^{T} (f_t(x_t) - f_t(x^*)) \le \frac{\|x^* - x_1\|_2 M}{\sqrt{T}}.$$

Remark 4. The above bound implies an $O(\frac{1}{\sqrt{T}})$ convergence rate for the offline setting where all $f_t \equiv f$. In particular, letting $\bar{x} = \frac{1}{T} \sum_{t=1}^{T} x_t$, we have

$$f(\bar{x}) - f(x^*) \le \frac{1}{T} \sum_{t=1}^{T} [f(x_t) - f(x^*)] \le \frac{\|x^* - x_1\|_2 M}{\sqrt{T}},$$

where the first step above is by Jensen's inequality. This recovers the result from Lecture 17 on subgradient descent.

6.2 Expoentiated gradient descent

Let $\mathcal{X} = \Delta_d$, and $\psi(x) = \sum_j x_j \log x_j$ be the negative entropy. Then ψ is strongly convex with respect to $\|\cdot\|_1$, with dual norm $\|\cdot\|_{\infty}$. Then the regret bound is

$$\sum_{t=1}^{T} \left(f_t(x_t) - f_t(x^*) \right) \le \frac{1}{\alpha} D_{\mathrm{KL}}\left(x^*, x_1 \right) + \frac{\alpha}{2} \sum_{t=1}^{T} \|g_t\|_{\infty}^2.$$

If in addition we take the initial iterate $x_1 = (\frac{1}{d}, \dots, \frac{1}{d})$ to be the uniform distribution, then one can verify that $D_{\text{KL}}(x^*, x_1) \leq \log d$. Also, set $\alpha = \sqrt{\frac{\log d}{2T \max_t ||g_t||_{\infty}^2}}$. Then the average regret is

$$\frac{1}{T}\sum_{t=1}^{T} \left(f_t(x_t) - f_t(x^*) \right) \le \sqrt{\frac{\log d \cdot \max_t \|g_t\|_{\infty}^2}{T}}.$$
(6)

Remark 5. Compared to online gradient descent, the dependence on the gradients g_t is max_t $||g_t||_{\infty}$ instead of max_t $||g_t||_2$. Thus exponentiated gradient descent can do better than gradient descent when the gradients g_t are small in magnitude and not sparse.

6.3 Expert problem

Recall that l_{tj} is the loss of expert *j* at time *t*, and that $g_t = l_t \in \{0, 1\}^d$. Thus $||g_t||_{\infty} \leq 1$. Plugging this into the bound for exponentiated gradient descent gives

$$\frac{1}{T}\sum_{t=1}^{T}\left(f_t(x_t) - f_t(x^*)\right) \le \sqrt{\frac{\log d}{T}}$$

Remark 6. This regret bound is optimal for the expert problem. In comparison, gradient descent would get $\sqrt{\frac{d}{T}}$ regret, which has an exponentially larger dependence on the dimension *d*.

7 Extensions

- 1. We chose our step size α to be proportional to $\frac{1}{\sqrt{T}}$. This requires the time horizon to be known to the algorithm. If *T* is not known, one can use a varying step size $\alpha_t = \frac{1}{\sqrt{t}}$ and prove essentially the same guarantees (under a slightly stronger boundedness assumption; see Duchi's notes.)
- 2. **Improve bounds.** If more is known about the loss function f_t , then better regret bounds (in the online setting) and convergence rates (in the offline setting) can be obtained.
 - f_t is smooth (gradient is Lipschitz): We have an improvement $\sqrt{T} \to O(1)$ in regret, which translates to an improvement $\frac{1}{\sqrt{T}} \to \frac{1}{T}$ in rate.
 - f_t is strongly convex: We have an improvement $\sqrt{T} \rightarrow \log T$ in regret, and hence $\frac{1}{\sqrt{T}} \rightarrow \frac{\log T}{T}$ in rate.

See Xinhua Zhang's notes for details.

3. So far, we assumed that we observe the losses of *all* the experts/arms, even those we did not choose/pull. This is the *full information* setting. Next week, we will look at the "bandit information" setting, where we only observe the loss of the expert/arm that we choose/pull, that is, we only see one entry of $\nabla f_t = g_t = l_t$.