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Lecture 3: Solution Concepts; Taylor’s Theorems

Yudong Chen

Consider the problem
min
x∈X

f (x), (P)

where X ⊆ dom( f ) ⊆ Rn is a closed set.

1 A Taxonomy of Solutions to (P)

Will use “solution” and “minimizer” interchangeably.

Definition 1. We say that x∗ ∈ X ⊆ dom( f ) is

1. a local minimizer/solution of (P) if there exists a neighborhood Nx∗ of x∗ such that for all
x ∈ Nx∗ ∩ X we have f (x) ≥ f (x∗);

2. a global minimizer of (P) if ∀x ∈ X : f (x) ≥ f (x∗)

3. a strict local minimizer of (P) if there exists a neighborhood Nx∗ of x∗ such that for all x ∈
Nx∗ ∩ X and x ̸= x∗ we have f (x) > f (x∗); (i.e., satisfies part 1 with a strict inequality)

4. an isolated local minimizer of (P) if there exists a neighborhood Nx∗ such that ∀x ∈ Nx∗ ∩ X :
f (x) ≥ f (x∗) and Nx∗ does not contain any other local minimizer.

5. a unique minimizer if it is the only global minimizer.

Example 1. A local minimizer that is not strict: consider a constant function

Example 2. A local minimizer that is not global: (picture)

Exercise 1. Prove that every isolated local minimizer is strict.

The converse of the above statement does not hold in general, as demonstrated by the example
below.
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Example 3. A strict minimizer that is not isolated:

• (not continuous) f1(x) =

{
1 x ̸= 0
0 x = 0

and x∗ = 0.

• (continuous) f2(x) =

{
x2 (1 + sin2( 1

x )
)

x ̸= 0
0 x = 0

and x∗ = 0.

Illustration: Left f1. Right: f2.

We want to determine whether a particular point is a local or global minimizer. A powerful
tool is Taylor’s theorem.

2 Taylor’s Theorem

For this part and until explicitly stated otherwise, we will be assuming that f is at least once
continuously differentiable (i.e., gradient exists everywhere and is continuous).

Recall: Taylor’s Theorem for 1D functions from calculus: Let f : R → R be a k-times continu-
ously differentiable function. Then

∀x, y ∈ R : f (y) = f (x) +
1
1!

f ′(x)(y− x) +
1
2!

f ′′(x)(y− x)2 + · · ·+ 1
k!

f (k)(x)(y− x)k + Rk(y)︸ ︷︷ ︸
remainder

.

Typical forms of Rk(y) (assume that f is k + 1 times continuously differentiable):

• Lagrange (mean-value) remainder:

Rk(y) =
1

(k + 1)!
f (k+1) (x + γ(y− x)) · (y− x)k+1

for some γ ∈ (0, 1);

• Integral remainder:

Rk(y) =
1
k!

∫ 1

0
(1− t)k f (k+1) (x + t(y− x)) (y− x)k+1dt.

Below is the multivariate version.
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Theorem 1 (Taylor’s Theorem; Thm 2.1 in Wright-Recht). Let f : Rd → R̄ be a continuously differ-
entiable function. Then, for all x, y ∈ dom( f ) such that {(1− α)x + αy : α ∈ (0, 1)} ⊆ dom( f ), we
have

1. f (y) = f (x) +
∫ 1

0 ⟨∇ f (x + t(y− x)) , y− x⟩dt

2. f (y) = f (x) + ⟨∇ f (x + γ(y− x)) , y− x⟩ for some γ ∈ (0, 1) (a.k.a. Mean Value Thm).

If f is twice continuously differentiable:

3. ∇ f (y) = ∇ f (x) +
∫ 1

0 ∇
2 f (x + t(y− x)) (y− x)dt. Here

∇2 f (x) =

 · · ·
... ∂2 f

∂xi∂xj
(x)

...
· · ·

 ∈ Rd×d

denotes the Hessian matrix (“second-order derivative”) of f at x.

4. ∃γ ∈ (0, 1) :

f (y) = f (x) + ⟨∇ f (x), y− x⟩+ 1
2
〈
∇2 f (x + γ(y− x)) (y− x), y− x

〉
= f (x) + ⟨∇ f (x), y− x⟩+ 1

2
(y− x)⊤∇2 f (x + γ(y− x)) (y− x).

Remark 1. Can you prove a “Mean-Value Thm” for the gradient:

∃γ ∈ (0, 1) : ∇ f (y) = ∇ f (x) +∇2 f (x + γ(y− x)) (y− x)?←− This is wrong!

No! This is a common mistake.

2.1 Digression: order notation

Two sequences: {ak}k≥1 , {bk}k≥1, for all k: ak, bk ≥ 0.

Big-Oh notation: ak = O(bk)⇐⇒

(∃M > 0)(∃K < ∞)(∀k ≥ K) : ak ≤ Mbk.

e.g. k = O( 1
10 k2), k = O( 1

10! k)
If ak = O(bk) and bk = O(ak), we write ak = Θ(bk) .

Little-oh notation:
ak = o(bk)⇐⇒ lim

k→∞

ak

bk
= 0.

So ak = o(1) means ak → 0.

Using the notations above, we can show that for f continuously differentiable at x,

f (x + p) = f (x) +∇ f (x)⊤p + o (∥p∥) .

Explicitly, this means

lim
∥p∥→0

∣∣ f (x + p)− f (x) +∇ f (x)⊤p
∣∣

∥p∥ = 0.
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Proof. By part 2 of Theorem 1 (Taylor’s), we have

f (x + p) = f (x) +∇ f (x + γp)⊤p

= f (x) +∇ f (x)⊤p + (∇ f (x + γp)−∇ f (x))⊤ p

= f (x) +∇ f (x)⊤p + O (∥∇ f (x + γp)−∇ f (x)∥2 · ∥p∥2) Cauchy-Schwarz

= f (x) +∇ f (x)⊤p + o (∥p∥2) ,

where the step follows from continuity of ∇ f : ∥∇ f (x + γp)−∇ f (x)∥2 → 0 as p→ 0.
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