Lecture 3: Solution Concepts; Taylor's Theorems

Yudong Chen

Consider the problem

$$\min_{x \in \mathcal{X}} f(x), \tag{P}$$

where $\mathcal{X} \subseteq \operatorname{dom}(f) \subseteq \mathbb{R}^n$ is a closed set.

1 A Taxonomy of Solutions to (P)

Will use "solution" and "minimizer" interchangeably.

Definition 1. We say that $x^* \in \mathcal{X} \subseteq \text{dom}(f)$ is

- 1. a *local minimizer/solution* of (P) if there exists a neighborhood \mathcal{N}_{x^*} of x^* such that for all $x \in \mathcal{N}_{x^*} \cap \mathcal{X}$ we have $f(x) \ge f(x^*)$;
- 2. a global minimizer of (P) if $\forall x \in \mathcal{X}$: $f(x) \ge f(x^*)$
- 3. a *strict local minimizer* of (P) if there exists a neighborhood \mathcal{N}_{x^*} of x^* such that for all $x \in \mathcal{N}_{x^*} \cap \mathcal{X}$ and $x \neq x^*$ we have $f(x) > f(x^*)$; (i.e., satisfies part 1 with a strict inequality)
- 4. an *isolated local minimizer* of (P) if there exists a neighborhood \mathcal{N}_{x^*} such that $\forall x \in \mathcal{N}_{x^*} \cap \mathcal{X}$: $f(x) \ge f(x^*)$ and \mathcal{N}_{x^*} does not contain any other local minimizer.
- 5. a *unique minimizer* if it is the only global minimizer.

Example 1. A local minimizer that is not strict: consider a constant function

Example 2. A local minimizer that is not global: (picture)

Exercise 1. Prove that every isolated local minimizer is strict.

The converse of the above statement does *not* hold in general, as demonstrated by the example below.

Example 3. A strict minimizer that is not isolated:

- (not continuous) $f_1(x) = \begin{cases} 1 & x \neq 0 \\ 0 & x = 0 \end{cases}$ and $x^* = 0$.
- (continuous) $f_2(x) = \begin{cases} x^2 \left(1 + \sin^2(\frac{1}{x})\right) & x \neq 0 \\ 0 & x = 0 \end{cases}$ and $x^* = 0$.

Illustration: Left f_1 . Right: f_2 .

We want to determine whether a particular point is a local or global minimizer. A powerful tool is Taylor's theorem.

2 Taylor's Theorem

For this part and until explicitly stated otherwise, we will be assuming that f is at least once continuously differentiable (i.e., gradient exists everywhere and is continuous).

Recall: Taylor's Theorem for 1D functions from calculus: Let $f : \mathbb{R} \to \mathbb{R}$ be a *k*-times continuously differentiable function. Then

$$\forall x, y \in \mathbb{R} : f(y) = f(x) + \frac{1}{1!}f'(x)(y-x) + \frac{1}{2!}f''(x)(y-x)^2 + \dots + \frac{1}{k!}f^{(k)}(x)(y-x)^k + \underbrace{R_k(y)}_{\text{remainder}}.$$

Typical forms of $R_k(y)$ (assume that *f* is k + 1 times continuously differentiable):

• Lagrange (mean-value) remainder:

$$R_k(y) = \frac{1}{(k+1)!} f^{(k+1)} \left(x + \gamma(y-x) \right) \cdot (y-x)^{k+1}$$

for some $\gamma \in (0, 1)$;

• Integral remainder:

$$R_k(y) = \frac{1}{k!} \int_0^1 (1-t)^k f^{(k+1)} \left(x + t(y-x) \right) \left(y - x \right)^{k+1} \mathrm{d}t.$$

Below is the multivariate version.

Theorem 1 (Taylor's Theorem; Thm 2.1 in Wright-Recht). Let $f : \mathbb{R}^d \to \mathbb{R}$ be a continuously differentiable function. Then, for all $x, y \in \text{dom}(f)$ such that $\{(1 - \alpha)x + \alpha y : \alpha \in (0, 1)\} \subseteq \text{dom}(f)$, we have

1. $f(y) = f(x) + \int_0^1 \langle \nabla f(x + t(y - x)), y - x \rangle dt$

2. $f(y) = f(x) + \langle \nabla f(x + \gamma(y - x)), y - x \rangle$ for some $\gamma \in (0, 1)$ (a.k.a. Mean Value Thm).

If f is twice continuously differentiable:

3. $\nabla f(y) = \nabla f(x) + \int_0^1 \nabla^2 f(x + t(y - x))(y - x) dt$. Here

$$\nabla^2 f(x) = \begin{bmatrix} \ddots & \ddots \\ \vdots & \frac{\partial^2 f}{\partial x_i \partial x_j}(x) & \vdots \\ & \ddots & \end{bmatrix} \in \mathbb{R}^{d \times d}$$

denotes the Hessian matrix ("second-order derivative") of f at x.

4. $\exists \gamma \in (0,1)$:

$$\begin{aligned} f(y) &= f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} \left\langle \nabla^2 f(x + \gamma(y - x))(y - x), y - x \right\rangle \\ &= f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} (y - x)^\top \nabla^2 f(x + \gamma(y - x))(y - x). \end{aligned}$$

Remark 1. Can you prove a "Mean-Value Thm" for the gradient:

$$\exists \gamma \in (0,1) : \nabla f(y) = \nabla f(x) + \nabla^2 f(x + \gamma(y - x)) (y - x)? \longleftarrow \text{This is wrong!}$$

No! This is a common mistake.

2.1 Digression: order notation

Two sequences: $\{a_k\}_{k\geq 1}$, $\{b_k\}_{k\geq 1}$, for all k: $a_k, b_k \geq 0$.

Big-Oh notation: $a_k = O(b_k) \iff$

 $(\exists M > 0)(\exists K < \infty)(\forall k \ge K) : a_k \le Mb_k.$

e.g. $k = O(\frac{1}{10}k^2), k = O(\frac{1}{10!}k)$ If $a_k = O(b_k)$ and $b_k = O(a_k)$, we write $a_k = \Theta(b_k)$.

Little-oh notation:

$$a_k = o(b_k) \iff \lim_{k \to \infty} \frac{a_k}{b_k} = 0.$$

So $a_k = o(1)$ means $a_k \to 0$.

Using the notations above, we can show that for f continuously differentiable at x,

$$f(x+p) = f(x) + \nabla f(x)^{\top} p + o(||p||).$$

Explicitly, this means

$$\lim_{\|p\|\to 0} \frac{\left|f(x+p) - f(x) + \nabla f(x)^\top p\right|}{\|p\|} = 0.$$

Proof. By part 2 of Theorem 1 (Taylor's), we have

$$f(x+p) = f(x) + \nabla f(x+\gamma p)^{\top} p$$

= $f(x) + \nabla f(x)^{\top} p + (\nabla f(x+\gamma p) - \nabla f(x))^{\top} p$
= $f(x) + \nabla f(x)^{\top} p + O(\|\nabla f(x+\gamma p) - \nabla f(x)\|_2 \cdot \|p\|_2)$ Cauchy-Schwarz
= $f(x) + \nabla f(x)^{\top} p + o(\|p\|_2)$,

where the step follows from continuity of ∇f : $\|\nabla f(x + \gamma p) - \nabla f(x)\|_2 \to 0$ as $p \to 0$.