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Lecture 5: Minima of Convex Functions; Algorithmic Setup

Yudong Chen

1 Minima of convex functions

Consider the constrained problem
min f(x). ()
Recall definition of convex functions.
Theorem 1. Consider the problem (P). Suppose f is convex, and X is convex, closed and non-empty. Then:
1. Any local solution to (P) is also a global solution.

2. The set of global solutions to (P) is convex.

Proof. Part 1: Suppose f.p.o.c. that x* is a local but not a global solution. Then there exists ¥ € X
such that f(x) < f(x*). As X is convex, foralla € (0,1),

(1—a)x"+ax e X.
As f is convex, for all a € (0,1):

fA=a)x" +ax) < (1-a)f(x") +af(x) < f(x7).

Hence every neighborhood of x* must include a point (1 — a)x* + aX for some & > 0 that will
have a strictly lower function value. So x* cannot be a local solution, a contradiction.

Part 2: Let x*, ¥ € X be any two global solutions.

X is convex = (1 —a)x* +ax € X.

f is convex =

fA-a)x" +ax) < (1-a)f(x") +af(x) = f(x") = f(%)

= f((1—a)x*+ax) = f(x*),so (1 —a)x* + ax is also a global solution = the set of global
solution is convex. O

1.1 Differentiable convex functions

Theorem 2 (Equivalent characterization of convexity). The following are true.

1. Let f : R? — R be continuously differentiable. The function f is convex if and only if

Y,y f(y) = f(x) +(Vf(x),y —x). (1)

(A picture. From local to global.)
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2. Let f : RY — R be twice continuously differentiable. The function f is convex if and only if

Vx: V2f(x) = 0.

Proof. Part 1, “only if”: By convexity of f, forany « € (0,1) :

(1= 0)x+ay) < (1—a)f(x) +af ()
g (o £ G a(y = ) = Fx) s (VF(),aly = ) + ola)

o 44

Taking « — 0 gives (1)
Part 1, “if”: Take any x,y and « € (0,1). Setz = (1 — a)x + ay. Apply (1) to x,z and y, z:

(2) +a(Vf(z),x—y), 2

> f
> f(z2) + (1= a)(Vf(z),y —x). )

(2)x (1 — a)+(3)xa gives
(1 =) f(x) +af(y) = f(2),

which implies convexity of f.
Part 2: See Wright-Recht, Lemma 2.9. O

Theorem 3 (Sufficient condition for global optimality). Consider the problem (P), where f is continu-
ously differentiable and convex. If x* € X and V f(x*) = 0, then x* is a global minimizer of f.

Proof. Use Part 1 of Theorem 2:
Va: fx) 2 f(x7) + (A, x —a7) = f(x).
O

Remark 1. Theorem 3 holds for both unconstrained (i.e., X = IRY) and constrained problems. Using
terminology from last time, x* being a stationary point is sufficient for global optimality. For
unconstrained problem, this is also necessary (Lecture 4, Theorem 1). For constrained problem,
this may not be necessary (example).

2 Strongly convex functions

We use Euclidean norm ||- ||, in this section.

Definition 1 (Strong convexity). Given m > 0, we say that f : R? — R is strongly convex with
modulus/parameter m (or m-strongly convex for short), if

Vay € RY: £ ((1-a)v+ay) < (1 a)f(x) +af(y) = 5 (1—aafly — x3.

. . . . . 2
Remark 2. Verify yourself that the above is equivalent to convexity of the function f(x) — % || x||5.

Theorem 4 (Equivalent characterization of strong convexity). The following hold.
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1. Suppose f is continuously differentiable. Then f is m-strong convexity if and only if

f) = () +(VF(x),y =)+ 5 lly = [
(A picture. Compare with convexity only. Complements L-smoothness.)
2. Suppose f is twice continuously differentiable. Then f is m-strong convexity if and only if
Vx : V2f(x) = ml.
(Compare with L-smoothness)
Proof. Apply Theorem 2 to the function f(x) — % | x[[3- O

Theorem 5. Suppose that f : R? — R is continuously differentiable and m-strongly convex for some
m > 0. If x* € X satisfies V f(x*) = 0, then x* is the unique global minimizer of f.

Proof. By Part 1 of Theorem 4:

fx) > Fx) + (LT x = x) + 3 [lx =23

>0 unless x=x*

3 Algorithmic setup

1. First-order oracle:
x — oracle — f(x), Vf(x)

2. Second-order oracle:
x — oracle — f(x), Vf(x), V2f(x)
All algorithms we consider in this course are iterative:

e start with some xg
e atiterationk=0,1,2,...

- get oracle answers for xi, choose xj1

4 Basic descent methods

Take the form
Xkp1 = Xk + &Pk, k=0,1,...

Definition 2. p € R? is a descent direction for f at x if

flx+tp) < f(x)

for all sufficiently small ¢t > 0.
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Proposition 1. If f is continuously differentiable (in a neighborhood of x), then any p such that (—V f(x), p) >
0 is a descent direction.

Proof. By Taylor’s theorem:

flx+tp) = f(x) +t(Vf(x+tp),p)

for some v € (0,1). We know that (Vf(x),p) < 0. As Vf is continuous, for all sufficiently small
t>0,

(Vf(x+tp),p) <0,
hence f(x +tp) < f(x). O

5 Gradient descent

What would be a good descent direction?
Could try to move in the direction of —V f(x). Justification: Look at all p with ||p||, = 1. Then

it (Vf(x),p) = = IVF(2)ll,

attained for p = _%'

“Simplest” descent algorithm:
Xjes1 = X — 0V f (),
where a; is the step size. Ideally, choose aj small enough so that

fxe1) < fx)

when Vf(x;) # 0.
Known as “gradient method”, “gradient descent”, “steepest descent” (w.r.t. the ¢ norm).
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