Lecture 5: Minima of Convex Functions; Algorithmic Setup

Yudong Chen

1 Minima of convex functions

Consider the constrained problem

$$
\begin{equation*}
\min _{x \in \mathcal{X}} f(x) \tag{P}
\end{equation*}
$$

Recall definition of convex functions.
Theorem 1. Consider the problem (P). Suppose f is convex, and \mathcal{X} is convex, closed and non-empty. Then:

1. Any local solution to (P) is also a global solution.
2. The set of global solutions to (P) is convex.

Proof. Part 1: Suppose f.p.o.c. that x^{*} is a local but not a global solution. Then there exists $\bar{x} \in \mathcal{X}$ such that $f(\bar{x})<f\left(x^{*}\right)$. As \mathcal{X} is convex, for all $\alpha \in(0,1)$,

$$
(1-\alpha) x^{*}+\alpha \bar{x} \in \mathcal{X} .
$$

As f is convex, for all $\alpha \in(0,1)$:

$$
f\left((1-\alpha) x^{*}+\alpha \bar{x}\right) \leq(1-\alpha) f\left(x^{*}\right)+\alpha f(\bar{x})<f\left(x^{*}\right) .
$$

Hence every neighborhood of x^{*} must include a point $(1-\alpha) x^{*}+\alpha \bar{x}$ for some $\alpha>0$ that will have a strictly lower function value. So x^{*} cannot be a local solution, a contradiction.

Part 2: Let $x^{*}, \bar{x} \in \mathcal{X}$ be any two global solutions.
\mathcal{X} is convex $\Longrightarrow(1-\alpha) x^{*}+\alpha \bar{x} \in \mathcal{X}$.
f is convex \Longrightarrow

$$
f\left((1-\alpha) x^{*}+\alpha \bar{x}\right) \leq(1-\alpha) f\left(x^{*}\right)+\alpha f(\bar{x})=f\left(x^{*}\right)=f(\bar{x})
$$

$\Longrightarrow f\left((1-\alpha) x^{*}+\alpha \bar{x}\right)=f\left(x^{*}\right)$, so $(1-\alpha) x^{*}+\alpha \bar{x}$ is also a global solution \Longrightarrow the set of global solution is convex.

1.1 Differentiable convex functions

Theorem 2 (Equivalent characterization of convexity). The following are true.

1. Let $f: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ be continuously differentiable. The function f is convex if and only if

$$
\begin{equation*}
\forall x, y: f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle \tag{1}
\end{equation*}
$$

(A picture. From local to global.)
2. Let $f: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ be twice continuously differentiable. The function f is convex if and only if

$$
\forall x: \nabla^{2} f(x) \succcurlyeq 0
$$

Proof. Part 1, "only if": By convexity of f, for any $\alpha \in(0,1)$:

$$
\begin{aligned}
& f((1-\alpha) x+\alpha y) \leq(1-\alpha) f(x)+\alpha f(y) \\
& \text { rearranging }
\end{aligned} \stackrel{f(y)-(x) \geq \frac{f(x+\alpha(y-x))-f(x)}{\Longrightarrow} \stackrel{\text { Taylor's }}{=} \frac{\langle\nabla f(x), \alpha(y-x)\rangle+o(\alpha)}{\alpha} .}{ }
$$

Taking $\alpha \rightarrow 0$ gives (1)
Part 1, "if": Take any x, y and $\alpha \in(0,1)$. Set $z=(1-\alpha) x+\alpha y$. Apply (1) to x, z and y, z :

$$
\begin{align*}
& f(x) \geq f(z)+\alpha\langle\nabla f(z), x-y\rangle \tag{2}\\
& f(y) \geq f(z)+(1-\alpha)\langle\nabla f(z), y-x\rangle \tag{3}
\end{align*}
$$

(2) $\times(1-\alpha)+(3) \times \alpha$ gives

$$
(1-\alpha) f(x)+\alpha f(y) \geq f(z),
$$

which implies convexity of f.
Part 2: See Wright-Recht, Lemma 2.9.
Theorem 3 (Sufficient condition for global optimality). Consider the problem (P), where f is continuously differentiable and convex. If $x^{*} \in \mathcal{X}$ and $\nabla f\left(x^{*}\right)=0$, then x^{*} is a global minimizer of f.

Proof. Use Part 1 of Theorem 2:

$$
\forall x: f(x) \geq f\left(x^{*}\right)+\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle=f\left(x^{*}\right) .
$$

Remark 1. Theorem 3 holds for both unconstrained (i.e., $\mathcal{X}=\mathbb{R}^{d}$) and constrained problems. Using terminology from last time, x^{*} being a stationary point is sufficient for global optimality. For unconstrained problem, this is also necessary (Lecture 4, Theorem 1). For constrained problem, this may not be necessary (example).

2 Strongly convex functions

We use Euclidean norm $\|\cdot\|_{2}$ in this section.
Definition 1 (Strong convexity). Given $m>0$, we say that $f: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ is strongly convex with modulus/ parameter m (or m-strongly convex for short), if

$$
\forall x, y \in \mathbb{R}^{d}: f((1-\alpha) x+\alpha y) \leq(1-\alpha) f(x)+\alpha f(y)-\frac{m}{2}(1-\alpha) \alpha\|y-x\|_{2}^{2}
$$

Remark 2. Verify yourself that the above is equivalent to convexity of the function $f(x)-\frac{m}{2}\|x\|_{2}^{2}$.
Theorem 4 (Equivalent characterization of strong convexity). The following hold.

1. Suppose f is continuously differentiable. Then f is m-strong convexity if and only if

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{m}{2}\|y-x\|_{2}^{2} .
$$

(A picture. Compare with convexity only. Complements L-smoothness.)
2. Suppose f is twice continuously differentiable. Then f is m-strong convexity if and only if

$$
\forall x: \nabla^{2} f(x) \succcurlyeq m I .
$$

(Compare with L-smoothness)
Proof. Apply Theorem 2 to the function $f(x)-\frac{m}{2}\|x\|_{2}^{2}$.
Theorem 5. Suppose that $f: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ is continuously differentiable and m-strongly convex for some $m>0$. If $x^{*} \in \mathcal{X}$ satisfies $\nabla f\left(x^{*}\right)=0$, then x^{*} is the unique global minimizer of f.
Proof. By Part 1 of Theorem 4:

$$
f(x) \geq f\left(x^{*}\right)+\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle+\underbrace{\frac{m}{2}\left\|x-x^{*}\right\|_{2}^{2}}_{>0 \text { unless } x=x^{*}} .
$$

3 Algorithmic setup

1. First-order oracle:

$$
x \longrightarrow \text { oracle } \longrightarrow f(x), \nabla f(x)
$$

2. Second-order oracle:

$$
x \longrightarrow \text { oracle } \longrightarrow f(x), \nabla f(x), \nabla^{2} f(x)
$$

All algorithms we consider in this course are iterative:

- start with some x_{0}
- at iteration $k=0,1,2, \ldots$
- get oracle answers for x_{k}, choose x_{k+1}

4 Basic descent methods

Take the form

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}, \quad k=0,1, \ldots
$$

Definition 2. $p \in \mathbb{R}^{d}$ is a descent direction for f at x if

$$
f(x+t p)<f(x)
$$

for all sufficiently small $t>0$.

Proposition 1. If f is continuously differentiable (in a neighborhood of x), then any p such that $\langle-\nabla f(x), p\rangle\rangle$ 0 is a descent direction.

Proof. By Taylor's theorem:

$$
f(x+t p)=f(x)+t\langle\nabla f(x+\gamma t p), p\rangle
$$

for some $\gamma \in(0,1)$. We know that $\langle\nabla f(x), p\rangle<0$. As ∇f is continuous, for all sufficiently small $t>0$,

$$
\langle\nabla f(x+\gamma t p), p\rangle<0,
$$

hence $f(x+t p)<f(x)$.

5 Gradient descent

What would be a good descent direction?
Could try to move in the direction of $-\nabla f(x)$. Justification: Look at all p with $\|p\|_{2}=1$. Then

$$
\inf _{\|p\|_{2}=1}\langle\nabla f(x), p\rangle=-\|\nabla f(x)\|_{2}
$$

attained for $p=-\frac{\nabla f(x)}{\|\nabla f(x)\|_{2}}$.
"Simplest" descent algorithm:

$$
x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right),
$$

where α_{k} is the step size. Ideally, choose α_{k} small enough so that

$$
f\left(x_{k+1}\right)<f\left(x_{k}\right)
$$

when $\nabla f\left(x_{k}\right) \neq 0$.
Known as "gradient method", "gradient descent", "steepest descent" (w.r.t. the ℓ_{2} norm).

