Lecture 9-10: Accelerated Gradient Descent

Yudong Chen

In previous lectures, we showed that gradient descent achieves a $\frac{1}{k}$ convergence rate for smooth convex functions and a $\left(1-\frac{m}{L}\right)^{k}$ geometric rate for L-smooth and m-strongly convex functions. Gradient descent is very greedy: it only uses the gradient $\nabla f\left(x_{k}\right)$ at the current point to choose the next iterate and discards information from past iterates.

It turns out we can do better than gradient descent, achieving a $\frac{1}{k^{2}}$ rate and a $\left(1-\sqrt{\frac{m}{L}}\right)^{k}$ rate in the two cases above. Both rates are optimal in a precise sense. The algorithms the attain these rates are known as Nesterov's accelerated gradient descent (AGD) or Nesterov's optimal methods.

1 Warm-up: the heavy-ball method

The high level idea of acceleration is adding momentum to the GD update. For example, consider the update

$$
\begin{aligned}
y_{k} & =x_{k}+\beta\left(x_{k}-x_{k-1}\right), & & \text { momentum step } \\
x_{k+1} & =y_{k}-\alpha \nabla f\left(x_{k}\right), & & \text { gradient step }
\end{aligned}
$$

where we first take a step in the direction $\left(x_{k}-x_{k-1}\right)$, which is the momentum carried over from the previous update, and then take a standard gradient descent step. This is known as Polyak's heavy-ball method. The update above is equivalent to a discretization of the second order ODE

$$
\ddot{x}=-a \nabla f(x)-b \dot{x},
$$

which models the motion of a body in a potential field given by f with friction (hence the name heavy-ball).

It can be shown that for a strongly convex quadratic function f, the heavy-ball method achieves the accelerated rate $\left(1-\sqrt{\frac{m}{L}}\right)^{k} .{ }^{1}$ For non-quadratic functions (e.g., those that are not twice differentiable), theoretical guarantees for heavy-ball method are less clear; in fact, heavy-ball may not even converge for such functions.

Rather than using the gradient at x_{k}, Nesterov's AGD uses the gradient at the point y_{k} after the momentum update:

$$
\begin{aligned}
y_{k} & =x_{k}+\beta\left(x_{k}-x_{k-1}\right), & & \text { momentum step } \\
x_{k+1} & =y_{k}-\alpha \nabla f\left(y_{k}\right) . & & \text { "lookahead" gradient step }
\end{aligned}
$$

As we see below, Nesterov's AGD enjoys convergence guarantees for (strongly) convex functions beyond quadratics.

[^0]Below is an illustration of the updates of heavy ball method and Nesterov's AGD: ${ }^{2}$

$$
x_{t+1}=x_{t}-\alpha \nabla f\left(x_{t}\right)+\mu\left(x_{t}-x_{t-1}\right)
$$

$$
\begin{aligned}
x_{t+1}=x_{t} & +\mu\left(x_{t}-x_{t-1}\right) \\
& \quad-\gamma \nabla f\left(x_{t}+\mu\left(x_{t}-x_{t-1}\right)\right.
\end{aligned}
$$

2 AGD for smooth and strongly convex f

Suppose f is m-strongly convex and L-smooth. Nesterov's AGD for minimizing f is given in Algorithm 1.

```
Algorithm 1 Nesterov's AGD, smooth and strongly convex
input: initial \(x_{0}\), strong convexity and smoothness parameters \(m, L\), number of iterations \(K\)
initialize: \(x_{-1}=x_{0}, \alpha=\frac{1}{L}, \beta=\frac{\sqrt{L / m}-1}{\sqrt{L / m}+1}\).
for \(k=0,1, \ldots K\)
    \(y_{k}=x_{k}+\beta\left(x_{k}-x_{k-1}\right)\)
    \(x_{k+1}=y_{k}-\alpha \nabla f\left(y_{k}\right)\)
return \(x_{K}\)
```

Let x^{*} be the unique minimizer of f and set $f^{*}:=f\left(x^{*}\right)$. By translation of coordinate, we may assume $x^{*}=0$ without loss of generality (hence $x_{k}=x_{k}-x^{*}$ and $y_{k}=y_{k}-x_{*}$). Define $\kappa:=\frac{L}{m}$ (condition number), $\rho^{2}:=1-\frac{1}{\sqrt{\kappa}}$ (contraction factor), $u_{k}:=\frac{1}{L} \nabla f\left(y^{k}\right)$, and

$$
V_{k}:=f\left(x_{k}\right)-f^{*}+\frac{L}{2}\left\|x_{k}-\rho^{2} x_{k-1}\right\|_{2}^{2} .
$$

The quantity V_{k}, viewed a function of $\left(x_{k}, x_{k-1}\right)$, is called a Lyapunov/potential function. We will show $V_{k+1} \leq \rho^{2} V_{k}$, hence geometric convergence.

By smoothness and strong convexity:

$$
\begin{align*}
f(z)+\langle\nabla f(z), w-z\rangle+\frac{m}{2}\|w-z\|_{2}^{2} & \leq f(w) \tag{1}\\
& \leq f(z)+\langle\nabla f(z), w-z\rangle+\frac{L}{2}\|w-z\|_{2}^{2}, \quad \forall w, z \tag{2}
\end{align*}
$$

[^1]It follows that

$$
\begin{aligned}
V_{k+1}= & f\left(x_{k+1}\right)-f^{*}+\frac{L}{2}\left\|x_{k+1}-\rho^{2} x_{k}\right\|_{2}^{2} & & \text { by defnition } \\
& \leq f\left(y_{k}\right)-f^{*}+\left\langle L u_{k}, x_{k+1}-y_{k}\right\rangle+\frac{L}{2}\left\|x_{k+1}-y_{k}\right\|+\frac{L}{2}\left\|x_{k+1}-\rho^{2} x_{k}\right\|_{2}^{2} & & \text { upper bound (2) } \\
\leq & f\left(y_{k}\right)-f^{*}-\frac{L}{2}\left\|u_{k}\right\|_{2}^{2}+\frac{L}{2}\left\|x_{k+1}-\rho^{2} x_{k}\right\|_{2}^{2} & & x_{k+1}-y_{k}=-u_{k} \\
= & \rho^{2}\left[f\left(y_{k}\right)-f^{*}+L\left\langle u_{k}, x_{k}-y_{k}\right\rangle\right]-\rho^{2} L\left\langle u_{k}, x_{k}-y_{k}\right\rangle & & \text { adding and subtracting terms } \\
& +\left(1-\rho^{2}\right)\left[f\left(y_{k}\right)-f^{*}-L\left\langle u_{k}, y_{k}\right\rangle\right]+\left(1-\rho^{2}\right) L\left\langle u_{k}, y_{k}\right\rangle & & \\
& -\frac{L}{2}\left\|u_{k}\right\|_{2}^{2}+\frac{L}{2}\left\|x_{k+1}-\rho^{2} x_{k}\right\|_{2}^{2} & &
\end{aligned}
$$

But

$$
f\left(y_{k}\right) \leq f\left(x_{k}\right)-L\left\langle u_{k}, x_{k}-y_{k}\right\rangle-\frac{m}{2}\left\|x_{k}-y_{k}\right\|_{2}^{2} \quad \text { lower bound (1) with } w=x_{k}, z=y_{k}
$$

and

$$
f\left(x^{*}\right) \geq f\left(y_{k}\right)-L\left\langle u_{k}, y_{k}\right\rangle+\frac{m}{2}\left\|y_{k}\right\|_{2}^{2} \quad \text { lower bound (1) with } w=x^{*}=0, z=y_{k} .
$$

Combining last three equations gives

$$
\begin{aligned}
V_{k+1} \leq & \rho^{2}\left[f\left(x_{k}\right)-f^{*}-\frac{m}{2}\left\|x_{k}-y_{k}\right\|_{2}^{2}\right]-\rho^{2} L\left\langle u_{k}, x_{k}-y_{k}\right\rangle \\
& -\left(1-\rho^{2}\right) \frac{m}{2}\left\|y_{k}\right\|_{2}^{2}+\left(1-\rho^{2}\right) L\left\langle u_{k}, y_{k}\right\rangle \\
& -\frac{L}{2}\left\|u_{k}\right\|_{2}^{2}+\frac{L}{2}\left\|x_{k+1}-\rho^{2} x_{k}\right\|_{2}^{2} \\
= & \rho^{2} \underbrace{\left[f\left(x_{k}\right)-f^{*}+\frac{L}{2}\left\|x_{k}-\rho^{2} x_{k-1}\right\|_{2}^{2}\right]}_{V_{k}}+R_{k}
\end{aligned}
$$

where

$$
\begin{aligned}
R_{k}:= & -\rho^{2} \frac{m}{2}\left\|x_{k}-y_{k}\right\|_{2}^{2}-\left(1-\rho^{2}\right) \frac{m}{2}\left\|y_{k}\right\|_{2}^{2} \\
& +L\left\langle u_{k}, y_{k}-\rho^{2} x_{k}\right\rangle-\frac{L}{2}\left\|u_{k}\right\|_{2}^{2} \\
& +\frac{L}{2}\left\|x_{k+1}-\rho^{2} x_{k}\right\|_{2}^{2}-\frac{\rho^{2} L}{2}\left\|x_{k}-\rho^{2} x_{k-1}\right\|_{2}^{2}
\end{aligned}
$$

Claim 1. Under the choice of α, β and ρ above, we have

$$
R_{k}=-\frac{1}{2} L \rho^{2}\left(\frac{1}{\kappa}+\frac{1}{\sqrt{\kappa}}\right)\left\|x_{k}-y_{k}\right\|_{2}^{2} \leq 0
$$

Proof. Substitute the definitions of $\alpha, \beta, \rho, x_{k+1}, y_{k}$ into the definition of R_{k}. (Verify it yourself!)

It follows hat $V_{k+1} \leq \rho^{2} V_{k}, \forall k$, hence

$$
\begin{align*}
f\left(x_{k}\right)-f^{*} \leq V_{k} & \leq \rho^{2 k} V_{0} & & \\
& =\rho^{2 k}\left(f\left(x_{0}\right)-f^{*}+\frac{L}{2}\left\|x_{0}-\rho^{2} x_{0}\right\|_{2}^{2}\right) & & x_{-1}=x_{0} \\
& =\rho^{2 k}\left(f\left(x_{0}\right)-f^{*}+\frac{m}{2}\left\|x_{0}\right\|_{2}^{2}\right) & & \left(1-\rho^{2}\right)^{2}=\frac{1}{\kappa}=\frac{m}{L} \\
& =\rho^{2 k}\left(f\left(x_{0}\right)-f^{*}+\frac{m}{2}\left\|x_{0}-x^{*}\right\|_{2}^{2}\right) & & x^{*}=0 \tag{3}\\
& \leq \rho^{2 k}\left(\frac{L}{2}\left\|x_{0}-x^{*}\right\|^{2}+\frac{m}{2}\left\|x_{0}-x^{*}\right\|_{2}^{2}\right) & & \text { upper bound (2), } \nabla f\left(x^{*}\right)=0 \\
& =\left(1-\sqrt{\frac{m}{L}}\right)^{k} \cdot \frac{L+m}{2}\left\|x_{0}-x^{*}\right\|_{2}^{2} . & & \rho^{2}=1-\sqrt{\frac{m}{L}}
\end{align*}
$$

We have established the following.
Theorem 1. For Nesterov's AGD Algorithm 1 applied to m-strongly convex L-smooth f, we have

$$
f\left(x_{k}\right)-f^{*} \leq\left(1-\sqrt{\frac{m}{L}}\right)^{k} \cdot \frac{(L+m)\left\|x_{0}-x^{*}\right\|_{2}^{2}}{2}, \quad k=0,1, \ldots
$$

(Iteration complexity bound) Equivalently, we have $f\left(x_{k}\right)-f^{*} \leq \epsilon$ after at most

$$
O\left(\sqrt{\frac{L}{m}} \log \frac{L\left\|x_{0}-x^{*}\right\|_{2}^{2}}{\epsilon}\right) \text { iterations. }
$$

Recall GD, which achieves $f\left(x_{k}\right)-f^{*}=O\left(\left(1-\frac{m}{L}\right)^{k}\right)$ and $k=O\left(\frac{L}{m} \log \frac{1}{\epsilon}\right)$. AGD improves by a factor of $\sqrt{\kappa}=\sqrt{\frac{L}{m}}$, which is significant for ill-conditioned problems with a large κ.

Example 1 (Ill-conditioned problems in statistical learning). In statistical learning, we often need to minimize a function of the form

$$
f(x)=g(x)+\frac{m}{2}\|x\|_{2}^{2}
$$

where g is a convex function corresponding to the empirical risk/training loss (e.g., the logistic regression loss) of a statistical model with parameter x, and $\frac{m}{2}\|x\|_{2}^{2}$ is called a regularizer. Often, g is not strongly convex, so the strong convexity of f comes from the regularizer. In many settings, the smoothness parameter of f is $O(1)$, and the regularization parameter is taken to be $m \propto \frac{1}{n}$, where n is the number of data points. The condition number $\kappa=\frac{L}{m} \propto n$ can be large in this case. We explore this setting in HW3.

3 AGD for smooth convex f

Suppose f is L-smooth, with a minimizer x^{*} and minimum value $f^{*}=f\left(x^{*}\right)$. Nesterov's AGD for such an f is given in Algorithm 2. Note that we allow the momentum parameter β_{k} to vary with k, and $\lambda_{k+1} \geq 0$ is chosen to satisfy $\lambda_{k+1}^{2}-\lambda_{k+1}=\lambda_{k}^{2}$.

```
Algorithm 2 Nesterov's AGD, smooth convex
input: initial \(x_{0}\), smoothness parameter \(L\), number of iterations \(K\)
initialize: \(x_{-1}=x_{0}, \alpha=\frac{1}{L}, \lambda_{0}=0, \beta_{0}=0\).
for \(k=0,1, \ldots, K\)
    \(y_{k}=x_{k}+\beta_{k}\left(x_{k}-x_{k-1}\right)\)
    \(x_{k+1}=y_{k}-\alpha \nabla f\left(y_{k}\right)\)
    \(\lambda_{k+1}=\frac{1+\sqrt{1+4 \lambda_{k}^{2}}}{2}, \beta_{k+1}=\frac{\lambda_{k}-1}{\lambda_{k+1}}\)
return \(x_{K}\)
```

(The Lyapunov function approach in the previous section can be adapted to analyze Algorithm 2; see Wright-Recht Chapter 4.4. Here we present a somewhat different proof.)

Recall that a gradient step satisfies the descent property (Descent Lemma, Lec 6 Lemma 1)

$$
\begin{equation*}
f\left(x_{k+1}\right) \leq f\left(y_{k}\right)-\frac{1}{2 L}\left\|\nabla f\left(y_{k}\right)\right\|_{2}^{2} \leq f\left(y_{k}\right) . \tag{4}
\end{equation*}
$$

Therefore, we have

$$
\begin{array}{rlrl}
f\left(x_{k+1}\right)-f\left(x_{k}\right) & =f\left(x_{k+1}\right)-f\left(y_{k}\right)+f\left(y_{k}\right)-f\left(x_{k}\right) & \\
& \leq-\frac{1}{2 L}\left\|\nabla f\left(y_{k}\right)\right\|_{2}^{2}+\left\langle\nabla f\left(y_{k}\right), y_{k}-x_{k}\right\rangle & & \text { descent property (4), convexity } \\
& =-\frac{L}{2}\left\|y_{k}-x_{k+1}\right\|_{2}^{2}+L\left\langle y_{k}-x_{k+1}, y_{k}-x_{k}\right\rangle . & \nabla f\left(y_{k}\right)=L\left(y_{k}-x_{k+1}\right) \tag{5}
\end{array}
$$

Similarly:

$$
\begin{align*}
f\left(x_{k+1}\right)-f\left(x^{*}\right) & =f\left(x_{k+1}\right)-f\left(y_{k}\right)+f\left(y_{k}\right)-f\left(x^{*}\right) \\
& \leq-\frac{1}{2 L}\left\|\nabla f\left(y_{k}\right)\right\|_{2}^{2}+\left\langle\nabla f\left(y_{k}\right), y_{k}-x^{*}\right\rangle \\
& =-\frac{L}{2}\left\|y_{k}-x_{k+1}\right\|_{2}^{2}+L\left\langle y_{k}-x_{k+1}, y_{k}-x^{*}\right\rangle . \tag{6}
\end{align*}
$$

Define the optimality gap $\Delta_{k}:=f\left(x_{k}\right)-f\left(x^{*}\right)$. Taking eq.(5) $\times \lambda_{k}\left(\lambda_{k}-1\right)+$ eq.(6) $\times \lambda_{k}$, we get $\lambda_{k}\left(\lambda_{k}-1\right)\left(\Delta_{k+1}-\Delta_{k}\right)+\lambda_{k} \Delta_{k+1} \leq L\left\langle y_{k}-x_{k+1}, \lambda_{k}\left(\lambda_{k}-1\right)\left(y_{k}-x_{k}\right)+\lambda_{k}\left(y_{k}-x^{*}\right)\right\rangle-\frac{L}{2} \lambda_{k}^{2}\left\|y_{k}-x_{k+1}\right\|_{2}^{2}$.

Rearranging terms gives the key inequality:

$$
\begin{equation*}
\lambda_{k}^{2} \Delta_{k+1}-\left(\lambda_{k}^{2}-\lambda_{k}\right) \Delta_{k} \leq \frac{L}{2} \cdot\left[2\left\langle\lambda_{k}\left(y_{k}-x_{k+1}\right), \lambda_{k} y_{k}-\left(\lambda_{k}-1\right) x_{k}-x^{*}\right\rangle-\left\|\lambda_{k}\left(y_{k}-x_{k+1}\right)\right\|_{2}^{2}\right] \tag{7}
\end{equation*}
$$

As we show below, the parameters λ_{k} and β_{k} are chosen to make the LHS and RHS above telescope.

In particular, substituting $\lambda_{k}^{2}-\lambda_{k}=\lambda_{k-1}^{2}$ into LHS of (7) and using the identity $2\langle a, b\rangle-$ $\|a\|_{2}^{2}=\|b\|_{2}^{2}-\|b-a\|_{2}^{2}$ on RHS of (7), we obtain

$$
\lambda_{k}^{2} \Delta_{k+1}-\lambda_{k-1}^{2} \Delta_{k} \leq \frac{L}{2} \cdot\left[\left\|\lambda_{k} y_{k}-\left(\lambda_{k}-1\right) x_{k}-x^{*}\right\|_{2}^{2}-\left\|\lambda_{k} x_{k+1}-\left(\lambda_{k}-1\right) x_{k}-x^{*}\right\|_{2}^{2}\right] .
$$

For the RHS, by definition and our choice of β_{k+1}, we have

$$
\begin{aligned}
& y_{k+1}=x_{k+1}+\beta_{k+1}\left(x_{k+1}-x_{k}\right)=x_{k+1}+\frac{\lambda_{k}-1}{\lambda_{k+1}}\left(x_{k+1}-x_{k}\right) \\
\Longleftrightarrow & \lambda_{k+1} y_{k+1}-\left(\lambda_{k+1}-1\right) x_{k+1}=\lambda_{k} x_{k+1}-\left(\lambda_{k}-1\right) x_{k} .
\end{aligned}
$$

Combining the last two equations give

$$
\lambda_{k}^{2} \Delta_{k+1}-\lambda_{k-1}^{2} \Delta_{k} \leq \frac{L}{2} \cdot\left[\left\|\lambda_{k} y_{k}-\left(\lambda_{k}-1\right) x_{k}-x^{*}\right\|_{2}^{2}-\left\|\lambda_{k+1} y_{k+1}-\left(\lambda_{k+1}-1\right) x_{k+1}-x^{*}\right\|_{2}^{2}\right] .
$$

We sum the above inequalities over k. Note that both sides telescope and $\lambda_{0}=0, \lambda_{1}=1, \beta_{1}=$ $-1, y_{1}=x_{0}$, hence

$$
\begin{aligned}
& \lambda_{k}^{2} \Delta_{k+1}-\lambda_{0}^{2} \Delta_{1} \leq \frac{L}{2}\left\|\lambda_{1} y_{1}-\left(\lambda_{1}-1\right) x_{1}-x^{*}\right\|_{2}^{2} \\
\Longrightarrow & \lambda_{k}^{2} \Delta_{k+1} \leq \frac{L}{2}\left\|x_{0}-x^{*}\right\|_{2}^{2} .
\end{aligned}
$$

Finally, note that

$$
\lambda_{k} \geq \frac{1+\sqrt{4 \lambda_{k-1}^{2}}}{2}=\lambda_{k-1}+\frac{1}{2}
$$

which, together with $\lambda_{1}=1$, imply $\lambda_{k} \geq \frac{k+1}{2}, \forall k$. It follows that

$$
f\left(x_{k+1}\right)-f\left(x^{*}\right)=\Delta_{k+1} \leq \frac{2 L\left\|x_{0}-x^{*}\right\|_{2}^{2}}{(k+1)^{2}}
$$

We have established the following.
Theorem 2. For Nesterov's AGD Algorithm 2 applied to L-smooth convex f, we have

$$
f\left(x_{k}\right)-f\left(x^{*}\right) \leq \frac{2 L\left\|x_{0}-x^{*}\right\|_{2}^{2}}{k^{2}}, \quad k=0,1, \ldots
$$

(Iteration complexity bound) Equivalently, we have $f\left(x_{k}\right)-f^{*} \leq \epsilon$ after at most

$$
O\left(\sqrt{\frac{L\left\|x_{0}-x^{*}\right\|_{2}^{2}}{\epsilon}}\right) \text { iterations. }
$$

Compare with GD, which achieves $f\left(x_{k}\right)-f^{*}=O\left(\frac{1}{k}\right)$ and $k=O\left(\frac{L}{\epsilon}\right)$. Significant improvement by AGD.

4 Bibliographical notes (optional)

AGD was originally developed in Nesterov (1983). See Nesterov (2004) for a textbook convergence analysis of AGD using bounding functions.

The last decade has witnessed a surge of papers that provide alternative derivation, interpretation or analysis of AGD:

- The Lyapunov function approach in Section 2 follows Lessard et al (2016). In a related direction, Su, Boyd and Candes (2015) connect AGD to a certain second-order ODE. Also related in spirit is a paper by Flammarion and Bach (2015).
- The proof in Section 3 follows Beck and Teboulle (2009).
- Allen-Zhu and Orrechia (2014) view AGD as a linear coupling of GD and mirror descent.
- This blog post by Hardt (2013) relates AGD to Chebyshev polynomials.
- Bubeck et al (2015) provides a geometric perspective and a short proof.
- Diakonikolas and Orecchia (2019) develops the approximate duality gap technique, which applies to the analysis of AGD.

See d'Aspremont et al 2021 for a recent survey on acceleration methods including AGD and beyond.

[^0]: ${ }^{1}$ This rate can be proved using elementary eigenvalue analysis similar to that in Wright-Recht Chap 4.2.

[^1]: ${ }^{2}$ Credit: Mitliagkas' notes

