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Lecture 11: Acceleration via Regularization and Restarting;
Lower Bounds

Yudong Chen

Last week we discussed two variants of Nesterov’s accelerated gradient descent (AGD).

Algorithm 1 Nesterov’s AGD, smooth and strongly convex
input: initial x0, strong convexity and smoothness parameters m, L, number of iterations K
initialize: x−1 = x0, β =

√
L/m−1√
L/m+1

.
for k = 0, 1, . . . K

yk = xk + β (xk − xk−1)
xk+1 = yk − 1

L∇ f (yk)
return xK

Theorem 1. For Nesterov’s AGD Algorithm 1 applied to m-strongly convex L-smooth f , we have

f (xk)− f ∗ ≤
(

1 −
√

m
L

)k

· (L + m) ∥x0 − x∗∥2
2

2
.

Equivalently, we have f (xk)− f ∗ ≤ ϵ after at most k = O
(√

L
m log L∥x0−x∗∥2

2
ϵ

)
iterations.

Algorithm 2 Nesterov’s AGD, smooth convex
input: initial x0, smoothness parameter L, number of iterations K
initialize: x−1 = x0, λ0 = 0, β0 = 0.
for k = 0, 1, . . . K

yk = xk + βk (xk − xk−1)
xk+1 = yk − 1

L∇ f (yk)

λk+1 =
1+
√

1+4λ2
k

2 , βk+1 = λk−1
λk+1

return xK

Theorem 2. For Nesterov’s AGD Algorithm 2 applied to L-smooth convex f , we have

f (xk)− f (x∗) ≤ 2L ∥x0 − x∗∥2
2

k2 .

In this lecture, we will show that the two types of acceleration above are closely related: we
can use one to derive the other. We then show that in a certain precise (but narrow) sense, the
convergence rates of AGD are optimal among first-order methods. For this reason, AGD is also
known as Nesterov’s optimal method.

1



UW-Madison CS/ISyE/Math/Stat 726 Spring 2024

1 Acceleration via regularization

Suppose we only know the AGD method for strongly convex functions (Algorithm 1) and its(
1 −

√m
L

)k guarantee (Theorem 1). Can we use it as a subroutine to develop an accelerated al-
gorithm for (non-strongly) convex functions with a 1

k2 convergence rate?
The answer is yes (up to logarithmic factors). One approach is to add a regularizer ϵ ∥x∥2

2 to
f (x) and apply Algorithm 1 to the function f (x) + ϵ ∥x∥2

2, which is strongly convex. See HW 3.

2 Acceleration via restarting

In the opposite direction, suppose we only know the AGD method for (non-strongly) convex func-
tions (Algorithm 2) and its 1

k2 guarantee (Theorem 2). Can we use it as a subroutine to develop an

accelerated algorithm for strongly convex functions with a
(
1 −

√m
L

)k convergence rate (equiva-

lently, a
√

L
m log 1

ϵ iteration complexity)?
This is possible using a classical and powerful idea in optimization: restarting. See Algorithm 3.

In each round, we run Algorithm 2 for
√

8L
m iterations to obtain xt+1. In the next round, we restart

Algorithm 2 using xt+1 as the initial solution and run for another
√

8L
m iterations. This is repeated

for T rounds.

Algorithm 3 Restarting AGD
input: initial x0, strong convexity and smoothness parameters m, L, number of rounds T
for t = 0, 1, . . . T

Run Algorithm 2 with xt (initial solution), L (smoothness parameter),
√

8L
m (number of

iterations) as the input. Let xt+1 be the output.

return xT

Exercise 1. How is Algorithm 3 different from running Algorithm 2 without restarting for T ×√
8L
m iterations?

2.1 Analysis

Suppose f is m-strongly convex and L-smooth. By Theorem 2, we know that

f (xt+1)− f (x∗) ≤ 2L ∥xt − x∗∥2
2

8L/m
=

m ∥xt − x∗∥2
2

4
.

By strong convexity, we have

f (xt) ≥ f (x∗) + ⟨∇ f (x∗), xt − x∗⟩︸ ︷︷ ︸
=0

+
m
2
∥xt − x∗∥2

2 ,

hence ∥xt − x∗∥2
2 ≤ 2

m ( f (xt)− f (x∗)). Combining, we get

f (xt+1)− f (x∗) ≤ f (xt)− f (x∗)
2

.

2



UW-Madison CS/ISyE/Math/Stat 726 Spring 2024

That is, each round of Algorithm 3 halves the optimality gap. It follows that

f (xT)− f (x∗) ≤
(

1
2

)T

( f (x0)− f (x∗)) .

Therefore, f (xT)− f (x∗) ≤ ϵ can be achieved after at most

T = O
(

log
f (x0)− f (x∗)

ϵ

)
rounds,

which corresponds to a total of

T ×
√

8L
m

= O

(√
L
m

log
f (x0)− f (x∗)

ϵ

)
AGD iterations.

This iteration complexity is the same as Theorem 1 up to a logarithmic factor.
Remark 1. Note how strong convexity is needed in the above argument.
Remark 2. Optional reading: This overview article discusses restarting as a general/meta algorith-
mic technique.

3 Lower bounds

In this section, we consider a class of first-order iterative algorithms that satisfy x0 = 0, and

xk+1 ∈ Lin {∇ f (x0),∇ f (x1), . . . ,∇ f (xk)} , ∀k ≥ 0, (1)

where the RHS denotes the linear subspace spanned by ∇ f (x0),∇ f (x1), . . . ,∇ f (xk); in other
words, xk+1 is an (arbitrary) linear combination of the gradients at the previous (k + 1) iterates.

3.1 Smooth and convex f

Theorem 3. There exists an L-smooth convex function f such that any first-order method in the sense of
(1) must satisfy

f (xk)− f (x∗) ≥ 3L ∥x0 − x∗∥2
2

32(k + 1)2 .

Comparing with this lower bound, we see that the L
k2 rate for AGD in Theorem 2 is opti-

mal/unimprovable (up to constants).

Proof of Theorem 3. Let A ∈ Rd×d be the matrix given by

Aij =


2, i = j
−1, j ∈ {i − 1, i + 1}
0, otherwise.

(2)

Explicitly,

A =



2 −1 0 0 · · · · · · 0
−1 2 −1 0 · · · · · · 0
0 −1 2 −1 0 · · · 0

. . . . . . . . .
0 · · · −1 2 −1
0 · · · −1 2


.
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Let ei ∈ Rd denote the i-th standard basis vector. Consider the quadratic function

f (x) =
L
8

x⊤Ax − L
4

x⊤e1,

which is convex and L-smooth since 0 ≼ A ≼ 4I. Note that ∇ f (x) = L
4 (Ax − e1). By induction,

we can show that for k ≥ 1,

xk ∈ Lin {e1, Ax1, . . . , Axk−1} ⊆ Lin {e1, . . . , ek} .

Therefore, if we let Ak ∈ Rd×d denote the matrix obtained by zeroing out the entries of A outside
the top-left k × k block, then

f (xk) =
L
8

x⊤k Akxk −
L
4

x⊤k e1 ≥ f ∗k := min
x

{
L
8

x⊤Akx − L
4

x⊤e1

}
.

By setting gradient to zero, we find that the minimum above is attained by

x∗k :=
(

1 − 1
k + 1

, 1 − 2
k + 1

, . . . , 1 − k
k + 1

, 0, . . . , 0
)⊤

∈ Rd,

with f ∗k = − L
8

(
1 − 1

k+1

)
. It follows that the global minimizer x∗ = x∗d of f satisfies f (x∗) = f ∗d =

− L
8

(
1 − 1

d+1

)
and (since x0 = 0)

∥x∗d − x0∥2
2 = ∥x∗d∥

2
2 =

d

∑
i=1

(
1 − i

d + 1

)2

≤ d + 1
3

.

Combining pieces and taking d = 2k + 1, we have

f (xk)− f (x∗) ≥ f ∗k − f ∗d =
L
8

(
1

k + 1
− 1

2k + 2

)
=

L
16

k + 1
(k + 1)2

=
L
32

d + 1
(k + 1)2

≥ 3L
32

∥x∗ − x0∥2
2

(k + 1)2 .

3.2 Smooth and strongly convex f

For strongly convex functions, we have the following lower bound, which shows that the
(

1 − 1√
L/m

)k

rate of AGD in Theorem 1 cannot be significantly improved.

Theorem 4. There exists an m-strongly convex and L-smooth function such that any first-order method in
the sense of (1) must satisfy

f (xk)− f (x∗) ≥ m
2

(
1 − 4√

L/m

)k+1

∥x0 − x∗∥2
2 .
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Proof. Let A ∈ Rd×d be defined in (2) above and consider the function

f (x) =
L − m

8

(
x⊤Ax − 2x⊤e1

)
+

m
2
∥x∥2

2 ,

which is L-smooth and m-strongly convex. Strong convexity implies that

f (xk)− f (x∗) ≥ m
2
∥xk − x∗∥2

2 . (3)

A similar argument as above shows that xk ∈ Lin {e1, . . . , ek} , hence

∥xk − x∗∥2
2 ≥

d

∑
i=k+1

x∗(i)2, (4)

where x∗(i) denotes the ith entry of x∗. For simplicity we take d → ∞ (we omit the formal limiting
argument).1 The minimizer x∗ can be computed by setting the gradient of f to zero, which gives
an infinite set of equations

1 − 2
L/m + 1
L/m − 1

x∗(1) + x∗(2) = 0,

x∗(k − 1)− 2
L/m + 1
L/m − 1

x∗(k) + x∗(k + 1) = 0, k = 2, 3, . . .

Solving these equations gives

x∗(i) =

(√
L/m − 1√
L/m + 1

)i

, i = 1, 2, . . . (5)

Combining pieces, we obtain

f (xk)− f (x∗) ≥ m
2

∞

∑
i=k+1

x∗(i)2 by (3) and (4)

≥ m
2

(√
L/m − 1√
L/m + 1

)2(k+1)

∥x0 − x∗∥2
2 by (5) and x0 = 0

=
m
2

(
1 − 4√

L/m + 1
+

4
(
√

L/m + 1)2

)k+1

∥x0 − x∗∥2
2

≥ m
2

(
1 − 4√

L/m

)k+1

∥x0 − x∗∥2
2 .

Remark 3. The lower bounds in Theorems 3 and 4 are in the worst-case/minimax sense: one cannot
find a first-order method that achieves a better convergence rate on all smooth convex functions
than AGD. This, however, does not prevent better rates to be achieved for a sub class of such
functions. It is also possible to achieve better rates by using higher-order information (e.g., the
Hessian).

1The convergence rates for AGD in Theorems 1 and 2 do not explicitly depend on the dimension d, hence these
results can be generalized to infinite dimensions.
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