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Lecture 11: Acceleration via Regularization and Restarting;
Lower Bounds

Yudong Chen

Last week we discussed two variants of Nesterov’s accelerated gradient descent (AGD).

Algorithm 1 Nesterov’s AGD, smooth and strongly convex

input: initial x¢, strong convexity and smoothness parameters m, L, number of iterations K

initialize: x_1 = xo, B = \/\/Z:Zi

fork=0,1,...K
Vi =xc+p (1xk — Xk_1)
Xer1 = Yk — T V. (k)
return xg

Theorem 1. For Nesterov's AGD Algorithm 1 applied to m-strongly convex L-smooth f, we have

Fl) = f* < <1_\/f>". (Lt m Iz =Xl

%112
Equivalently, we have f(xy) — f* < € after at most k = O <\/Elog L||xo€x2> iterations.

Algorithm 2 Nesterov’s AGD, smooth convex
input: initial xo, smoothness parameter L, number of iterations K
initialize: x_; = xp, Ao = 0, o = 0.
fork=0,1,...K
Y = Xx + B (xk - Xk—1)
Xf+1 = Yk — *Vf(]/k)
1+\/1+W

-1
M1 = B = Am

return xg

Theorem 2. For Nesterov's AGD Algorithm 2 applied to L-smooth convex f, we have

2L [|xo — x*|3

Flu) - fx) < =10

In this lecture, we will show that the two types of acceleration above are closely related: we
can use one to derive the other. We then show that in a certain precise (but narrow) sense, the
convergence rates of AGD are optimal among first-order methods. For this reason, AGD is also
known as Nesterov’s optimal method.
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1 Acceleration via regularization

Suppose we only know the AGD method for strongly convex functions (Algorithm 1) and its
(1- %)k guarantee (Theorem 1). Can we use it as a subroutine to develop an accelerated al-
gorithm for (non-strongly) convex functions with a kl—z convergence rate?

The answer is yes (up to logarithmic factors). One approach is to add a regularizer € ||x||3 to
f(x) and apply Algorithm 1 to the function f(x) + € ||x||3, which is strongly convex. See HW 3.

2 Acceleration via restarting

In the opposite direction, suppose we only know the AGD method for (non-strongly) convex func-
tions (Algorithm 2) and its % guarantee (Theorem 2). Can we use it as a subroutine to develop an

accelerated algorithm for strongly convex functions with a (1 — %)k convergence rate (equiva-
lently, a \/% log ! iteration complexity)?

This is possible using a classical and powerful idea in optimization: restarting. See Algorithm 3.
In each round, we run Algorithm 2 for \/% iterations to obtain x; 1. In the next round, we restart
Algorithm 2 using X;; as the initial solution and run for another \/% iterations. This is repeated
for T rounds.

Algorithm 3 Restarting AGD

input: initial Xy, strong convexity and smoothness parameters m, L, number of rounds T
fort =0,1,...T

Run Algorithm 2 with ¥; (initial solution), L (smoothness parameter), 4/ % (number of
iterations) as the input. Let X;;1 be the output.

return x

Exercise 1. How is Algorithm 3 different from running Algorithm 2 without restarting for T x
\/ % iterations?

2.1 Analysis

Suppose f is m-strongly convex and L-smooth. By Theorem 2, we know that

2L |7 — x|l _ m|% — x|l

Fl) - fa7) < g = P

By strong convexity, we have

) 2 f() + (V)T =) +5 |7 — x5,
=0

hence ||%; — x*||3 < 2 (f(%) — f(x*)). Combining, we get

f(X1) — f(x") < f(xt);f(x*)
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That is, each round of Algorithm 3 halves the optimality gap. It follows that

T
fn) = £ < (3) (FG) = F).

Therefore, f(x7) — f(x*) < € can be achieved after at most

7= 0 (1og "EV 2 souns

€
which corresponds to a total of

T X 4 /% =0 ( L log f(xo)—f(x)) AGD iterations.
m m €

This iteration complexity is the same as Theorem 1 up to a logarithmic factor.
Remark 1. Note how strong convexity is needed in the above argument.

Remark 2. Optional reading: This overview article discusses restarting as a general /meta algorith-
mic technique.

3 Lower bounds

In this section, we consider a class of first-order iterative algorithms that satisfy xo = 0, and

X1 € Lin{V f(x0), Vf(x1),...,Vf(xx)}, Vk >0, (1)

where the RHS denotes the linear subspace spanned by V f(xo), Vf(x1),..., Vf(x); in other
words, xi1 is an (arbitrary) linear combination of the gradients at the previous (k + 1) iterates.

3.1 Smooth and convex f

Theorem 3. There exists an L-smooth convex function f such that any first-order method in the sense of
(1) must satisfy
2
3L ||xo — x*|3

f(xk) _f(x*) > 32(k+ 1)2

Comparing with this lower bound, we see that the k% rate for AGD in Theorem 2 is opti-
mal/unimprovable (up to constants).

Proof of Theorem 3. Let A € R?*? be the matrix given by

2, i=j
Aij=< -1, jef{i—1,i+1} )
0, otherwise.
Explicitly,
[2 -1 0 O 0
-1 2 -1 0 0
o -1 2 -1 0 0
A=
0 -1 2 -1
0 -1 2|
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Let ¢; € RY denote the i-th standard basis vector. Consider the quadratic function

L L
flx) = ngAx — ZxTel,

which is convex and L-smooth since 0 < A < 4I. Note that Vf(x) = £(Ax — e). By induction,
we can show that fork > 1,

X € Lin{el,Axl,. ..,Axk,l} - Lil’l{b’l,. . .,ek} .

Therefore, if we let Ay € R?* denote the matrix obtained by zeroing out the entries of A outside
the top-left k x k block, then

L L . L L
flxx) = gxl;rAkxk - Zx;;rm > fi= min {SxTAkx — 4xTel} .

By setting gradient to zero, we find that the minimum above is attained by

1 2 T
x;;::<1 1 - K o,...,o) € RY,

Ck+1T k1T k41
with f = —% (1— klﬁ) . It follows that the global minimizer x* = x}; of f satisfies f(x*) = f] =
—% (1— z3) and (since xo = 0)
d : 2
I =l = il = £ (1- 75 ) <55
Combining pieces and taking d = 2k + 1, we have
L 1 1
. LAY T 2 2 e e
f) = £ 2 i = 5 (51~ 53)
_ L k+1
16 (k+1)2
_ L d+1
32 (k+1)2
3L |lx* — xoll3
=32 (k+1)2 "
t
3.2 Smooth and strongly convex f
For strongly convex functions, we have the following lower bound, which shows that the (1 — \/Lle)

rate of AGD in Theorem 1 cannot be significantly improved.

Theorem 4. There exists an m-strongly convex and L-smooth function such that any first-order method in
the sense of (1) must satisfy

m 4\ K )
f) = fe) = 5 (1= 2= ) = I3,

4
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Proof. Let A € R?*? be defined in (2) above and consider the function

L—m m
flx) = == (xTAx —2xTer) + %13,

which is L-smooth and m-strongly convex. Strong convexity implies that

fla) = f(x) = F Ilxe =23 ®)

A similar argument as above shows that x; € Lin {ey, ..., e}, hence

d
2 .
Ixe =Mz = 30 ()% 4)
i=k+1
where x*(i) denotes the ith entry of x*. For simplicity we take d — oo (we omit the formal limiting
argument).! The minimizer x* can be computed by setting the gradient of f to zero, which gives
an infinite set of equations

L/m+1 , win
x(k—l)—ZWx (k) +x*(k+1) =0, k=23,...

Solving these equations gives

i) (x/L/m—1>i

VL/m+1

Combining pieces, we obtain

fla) = f(x') = Z ¥ (i) by (3) and (4)

\Y
N3

2(k+1)
) l|x0 — x* |3 by (5) and xg = 0

) o — 2|2
+1 (\/L/m +1)2

k+1 )
) o — 212

VL/m+1
\/L/

NIEEENIE

v

(4
(1-
(1-

Remark 3. The lower bounds in Theorems 3 and 4 are in the worst-case/minimax sense: one cannot
find a first-order method that achieves a better convergence rate on all smooth convex functions
than AGD. This, however, does not prevent better rates to be achieved for a sub class of such
functions. It is also possible to achieve better rates by using higher-order information (e.g., the
Hessian).

IThe convergence rates for AGD in Theorems 1 and 2 do not explicitly depend on the dimension d, hence these
results can be generalized to infinite dimensions.
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