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Lecture 12: Conjugate Gradient Methods

Yudong Chen

Given a symmetric positive definite (PD) matrix A, we want to minimize

f (x) =
1
2

x>Ax− b>x.

We have ∇ f (x) = Ax− b and ∇2 f (x) = A. Since 0 ≺ A 4 λmax(A)I, f is convex and λmax(A)-
smooth, and the global minimizer is arg minx f (x) = x∗ = A−1b.

Example 1. A special case of the above problem is the linear least squares problem

f (x) =
1
2
‖Mx− c‖2

2 =
1
2

x> M>M︸ ︷︷ ︸
A

x− (M>c︸︷︷︸
b

)>x +
1
2
‖c‖2

2 .

Example 2. Minimizing f above is equivalent to solving the linear system

Ax = b

with symmetric positive definite A. This problem arises in many applications. One example is
when A = ∇2g(z) and b = ∇g(z), so the solution of the linear system is

(
∇2g(z)

)−1∇g(z), which
is the search direction at point z of Newton’s method applied to minimizing g. Other examples
include A being a covariance matrix or a graph Laplacian matrix.

Question 1. Why not just compute A−1 and use the formula x∗ = A−1b to compute the minimizer?

1 First-order methods and Krylov subspace

(In this section, xk denotes the iterate of an arbitrary first-order method.)
Consider first order methods for which each iterate xk lies in the affine subspace

x0 + Lin {∇ f (x0), . . . ,∇ f (xk−1)} ;

explicitly,

xk = x0 −
k−1

∑
i=0

hi,k∇ f (xi), (1)

where hi,k ∈ R, ∀i, k. Both GD and AGD take the form (1).
For quadratic f , thanks to the expression ∇ f (x) = Ax − b = A(x − x∗) for the gradient, we

have the following.

Lemma 1. For the quadratic function f (x) = 1
2 x>Ax− b>x and all k ≥ 0, we have

xk ∈ x0 + Lin
{

A(x0 − x∗), A2(x0 − x∗), . . . , Ak(x0 − x∗)
}

1



UW-Madison CS/ISyE/Math/Stat 726 Spring 2024

Proof. We prove by induction on k. Base case k = 0 is trivially true. Suppose

xi − x0 ∈ Lin
{

A(x0 − x∗), A2(x0 − x∗), . . . , Ai(x0 − x∗)
}

, ∀i ≤ k.

It follows that

∇ f (xi) = A (xi − x∗)

∈ Lin
{

A(x0 − x∗), A2(x0 − x∗), . . . , Ai+1(x0 − x∗)
}

, ∀i ≤ k.

Hence

xk+1 − x0 ∈ Lin {∇ f (x0), . . . ,∇ f (xk)}

⊆ Lin
{

A(x0 − x∗), A2(x0 − x∗), . . . , Ak+1(x0 − x∗)
}

. (2)

Definition 1. The linear subspace

Kk := Lin
{

A(x0 − x∗), A2(x0 − x∗), . . . , Ak(x0 − x∗)
}

is called the Krylov subspace of order k.

Lemma 1 says all first-order methods in the form (1) satisfy

xk ∈ x0 +Kk, ∀k.

2 Conjugate gradient methods

(In this section, xk denotes the iterate of the CG method specifically.)
The conjugate gradient (CG) method is given by

xk = arg min
x∈x0+Kk

f (x), k = 1, 2, . . .

By definition, for quadratic f , CG converges at least as fast as any first-order method, including
Nesterov’s AGD. Therefore, CG inherits the convergence guarantees for AGD: it outputs xk such
that f (xk)− f (x∗) ≤ ε in at most

O

(
min

{√
L
ε
‖x0 − x∗‖2 ,

√
L
m

log
L ‖x0 − x∗‖2

2
ε

})
iterations,

where L = λmax(A) and m = λmin(A) > 0.
But we can say more.
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2.1 Properties of CG

Lemma 2 (Lem 1.3.1 in Nesterov’s book). For any k ≥ 1, we have

Kk = Lin {∇ f (x0), . . . ,∇ f (xk−1)} .

Proof. In equation (2) we already established Lin {∇ f (x0), . . . ,∇ f (xk−1)} ⊆ Kk. It remains to
prove the reverse inclusion.

We use induction on k. Suppose Lin {∇ f (x0), . . . ,∇ f (xk−1)} ⊇ Kk. We want to show that
Lin{∇ f (x0), . . . ,∇ f (xk)} ⊇ Kk+1.

Note that xk−1 ∈ x0 +Kk−1 can be expressed as

xk−1 = x0 +
k−1

∑
i=1

βi,k−1Ai(x0 − x∗).

Consider two cases:

• ∇ f (xk−1) = 0. Hence

0 = ∇ f (xk−1) = A(xk−1 − x∗)

= A(x0 − x∗) +
k−2

∑
i=1

βi,k−1Ai+1(x0 − x∗)︸ ︷︷ ︸
∈Kk−1

+βk−1,k−1Ak(x0 − x∗).

This means Ak(x0− x∗) ∈ Kk−1 andKk = Kk−1. In turn, Ak+1(x0− x∗) ∈ Kk andKk+1 = Kk.
We conclude that Lin {∇ f (x0), . . . ,∇ f (xk)} ⊇ Kk = Kk+1, where the first step follows from
induction hypothesis.

• ∇ f (xk−1) 6= 0. Then

∇ f (xk) = A(x0 − x∗) +
k

∑
i=1

βi,k Ai+1(x0 − x∗)

= A(x0 − x∗) +
k−1

∑
i=1

βi,k Ai+1(x0 − x∗)︸ ︷︷ ︸
∈Kk

+βk,k Ak+1(x0 − x∗).

We claim that βk,k 6= 0. Taking the claim as given, we have

Kk+1 = Lin
{
Kk ∪ Ak+1(x0 − x∗)

}
= Lin {Kk ∪∇ f (xk)} .
⊆ Lin {∇ f (x0), . . . ,∇ f (xk−1),∇ f (xk)} .

Proof of claim: If βk,k = 0, then

xk = x0 +
k−1

∑
i=1

βi,k Ai(x0 − x∗) ∈ x0 +Kk−1,

so
xk = arg min

x∈x0+Kk
f (x) = arg min

x∈x0+Kk−1
f (x) = xk−1.
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Note that
xk−1 −

1
L
∇ f (xk−1) ∈ x0 +Kk,

hence

f (xk−1) = f (xk) ≤ f
(

xk−1 −
1
L
∇ f (xk−1)

)
≤ f (xk−1)−

1
2L
‖∇ f (xk−1)‖2

2 . Descent Lemma

Since ∇ f (xk−1) 6= 0, we have f (xk−1) < f (xk−1), a contradiction.

Lemma 3 (Lem 1.3.2 in Nesterov’s book). For any 0 ≤ i < k, we have

〈∇ f (xk),∇ f (xi)〉 = 0.

Proof. Define a function Φ : Rk → R by

Φ(λ) = f

(
x0 −

k−1

∑
i=0

λi∇ f (xi)︸ ︷︷ ︸
∈x0+Kk

)
,

where λ = (λ0, λ1, λ2, . . . , λk−1)
> ∈ Rk.

By specification of CG,
xk = arg min

x∈x0+Kk
f (x).

This means xk = x0 −∑k−1
i=0 λ∗i∇ f (xi) with

λ∗ = arg min
λ∈Rk

Φ(λ).

Therefore, for each i:

0 =
∂Φ(λ)

∂λi

∣∣∣
λ=λ∗

= 〈∇ f (xk),−∇ f (xi)〉 .

Two immediate corollaries:

Corollary 1 (Cor 1.3.1 in Nesterov’s book). CG finds x∗ = arg minx∈Rd f (x) in at most d iterations.

Proof. Lemma 3 says ∇ f (x0),∇ f (x1), . . . are orthogonal to each other. But in Rd, there cannot be
more than d orthogonal non-zero vectors, so we must have∇ f (xd) = 0 and thus xd is optimal.

Corollary 2 (Cor 1.3.2 in Nesterov’s book). ∀p ∈ Kk, 〈∇ f (xk), p〉 = 0.

Proof. By Lemma 2, p ∈ Kk = Lin {∇ f (x0), . . . ,∇ f (xk−1)}. By Lemma 3, any linear combination
of {∇ f (x0), . . . ,∇ f (xk−1)} is orthogonal to ∇ f (xk).
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2.2 Why is CG called CG?

Definition 2. Two vectors p, q ∈ Rd are said to be conjugate w.r.t. a matrix A ∈ Rd×d if 〈Ap, q〉 =
q>Ap = 0.

We can write the iteration of CG as

xk+1 = xk − hk pk,

where hk is the stepsize and pk is the search direction. Later we will show that

∀k 6= i : 〈Apk, pi〉 = 0.

Nocedal-Wright: ”Conjugate gradients is a misnomer. It is the search/descent directions that are
conjugate, not the gradients.”
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