# Lecture 13: Conjugate Gradient Methods: Implementation and Extensions 

Yudong Chen

## 1 Recap

Consider $f(x)=\frac{1}{2} x^{\top} A x-b^{\top} x$, where $A \succ 0$. Minimizing $f$ is equivalent to solving the linear system $A x=b$.

The conjugate gradient (CG) method is given by

$$
x_{k}=\arg \min _{x \in x_{0}+\mathcal{K}_{k}} f(x), \quad k=1,2, \ldots,
$$

where $\mathcal{K}_{k}:=\operatorname{Lin}\left\{A\left(x_{0}-x^{*}\right), \ldots, A^{k}\left(x_{0}-x^{*}\right)\right\}$ is the Krylov subspace of order $k$.
Lemma 1. For any $k \geq 1$, we have $\mathcal{K}_{k}=\operatorname{Lin}\left\{\nabla f\left(x_{0}\right), \ldots, \nabla f\left(x_{k-1}\right)\right\}$.
Lemma 2. For any $0 \leq i<k$, we have $\left\langle\nabla f\left(x_{k}\right), \nabla f\left(x_{i}\right)\right\rangle=0$.
Corollary 1. CG finds $x^{*}=\arg \min _{x \in \mathbb{R}^{d}} f(x)$ in at most diterations.
Corollary 2. $\forall p \in \mathcal{K}_{k},\left\langle\nabla f\left(x_{k}\right), p\right\rangle=0$.

## 2 Efficient implementation of CG

Define $\delta_{i}:=x_{i+1}-x_{i}$.
Lemma 3. For all $k \geq 1, \mathcal{K}_{k}=\operatorname{Lin}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}\right\}$.
Proof. Suppose Lin $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}\right\}=\mathcal{K}_{k}$. Want to show $\operatorname{Lin}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k}\right\}=\mathcal{K}_{k+1}$.

- If $\nabla f\left(x_{k}\right)=0$ : In the proof of Lemma 1 we showed that $\mathcal{K}_{k+1}=\mathcal{K}_{k}$ and $x_{k+1}=x_{k}=x^{*}$. Hence $\operatorname{Lin}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}, \delta_{k}\right\}=\operatorname{Lin}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}, 0\right\}=\mathcal{K}_{k}=\mathcal{K}_{k+1}$.
- If $\nabla f\left(x_{k}\right) \neq 0$ : In the proof of Lemma 1 we showed that

$$
x_{k+1}=x_{0}+\sum_{i=1}^{k} \beta_{i, k+1} A^{i}\left(x_{0}-x^{*}\right)+\beta_{k+1, k+1} A^{i}\left(x_{0}-x^{*}\right)
$$

for some $\beta_{k+1, k+1} \neq 0$, hence

$$
\delta_{k}=x_{k+1}-x_{k}=\underbrace{x_{0}-x_{k}}_{\in \mathcal{K}_{k}}+\underbrace{\sum_{i=1}^{k} \beta_{i, k+1} A^{i}\left(x_{0}-x^{*}\right)}_{\in \mathcal{K}_{k}}+\beta_{k+1, k+1} A^{k+1}\left(x_{0}-x^{*}\right)
$$

hence

$$
\begin{aligned}
\operatorname{Lin}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}, \delta_{k}\right\} & =\operatorname{Lin}\left\{\mathcal{K}_{k} \cup \delta_{k}\right\} \\
& =\operatorname{Lin}\left\{\mathcal{K}_{k} \cup A^{k+1}\left(x_{0}-x^{*}\right)\right\} \\
& =\mathcal{K}_{k+1}
\end{aligned}
$$

Lemma 4 (Lemma 1.3.3 in Nesterov's book). For any $k, i \geq 0, k \neq i$, the vectors $\delta_{i}, \delta_{k}$ are conjugate w.r.t. $A, i . e .,\left\langle A \delta_{k}, \delta_{i}\right\rangle=0$.

Proof. Assume w.l.o.g. $k>i$. Then

$$
\begin{aligned}
\left\langle A \delta_{k}, \delta_{i}\right\rangle & =\left\langle A\left(x_{k+1}-x_{k}\right), \delta_{i}\right\rangle \\
& =\left\langle A\left(x_{k+1}-x^{*}\right)-A\left(x_{k}-x^{*}\right), \delta_{i}\right\rangle \\
& =\left\langle\nabla f\left(x_{k+1}\right), \delta_{i}\right\rangle-\left\langle\nabla f\left(x_{k}\right), \delta_{i}\right\rangle \\
& =0-0,
\end{aligned}
$$

where in the last step we use $\delta_{i} \in \mathcal{K}_{i+1} \subseteq \mathcal{K}_{k} \subseteq \mathcal{K}_{k+1}$ and Corollary $2\left(\nabla f\left(x_{k+1}\right) \perp \mathcal{K}_{k+1}, \nabla f\left(x_{k}\right) \perp\right.$ $\mathcal{K}_{k}$ ).

We are ready to derive an explicit formula for CG iterate $x_{k+1}$. As $\mathcal{K}_{k}=\operatorname{Lin}\left\{\delta_{0}, \ldots, \delta_{k-1}\right\}$, we can express $x_{k+1} \in x_{0}+\mathcal{K}_{k+1}$ as

$$
x_{k+1}=\underbrace{x_{k}}_{\in x_{0}+\mathcal{K}_{k}}-\underbrace{h_{k} \nabla f\left(x_{k}\right)}_{\in \mathcal{K}_{k+1} \backslash \mathcal{K}_{k}}+\underbrace{\sum_{j=0}^{k-1} \alpha_{j} \delta_{j}}_{\in \mathcal{K}_{k}}
$$

for some scalars $h_{k}, \alpha_{0}, \alpha_{1}, \ldots, \alpha_{k-1}$. Equivalently,

$$
\delta_{k}=-h_{k} \nabla f\left(x_{k}\right)+\sum_{j=0}^{k-1} \alpha_{j} \delta_{j} .
$$

To make the above implementable, we need to determine $h_{k}$ and $\left\{\alpha_{j}\right\}$. For $i=0,1, \ldots, k-1$, taking the inner product with $A \delta_{i}$ gives

$$
\begin{aligned}
0 & =\left\langle A \delta_{i}, \delta_{k}\right\rangle & & \text { Lemma } 4 \\
& =-h_{k}\left\langle A \delta_{i}, \nabla f\left(x_{k}\right)\right\rangle+\sum_{j=0}^{k-1} \alpha_{j}\left\langle A \delta_{j}, \delta_{i}\right\rangle & & \\
& =-h_{k}\left\langle A \delta_{i}, \nabla f\left(x_{k}\right)\right\rangle+\alpha_{i}\left\langle A \delta_{i}, \delta_{i}\right\rangle . & & \text { Lemma } 4
\end{aligned}
$$

But

$$
A \delta_{i}=A\left(x_{i+1}-x^{*}\right)-A\left(x_{i}-x^{*}\right)=\nabla f\left(x_{i+1}\right)-\nabla f\left(x_{i}\right) .
$$

Combining the last two equations gives

$$
h_{k}\left\langle\nabla f\left(x_{i+1}\right)-\nabla f\left(x_{i}\right), \nabla f\left(x_{k}\right)\right\rangle=\alpha_{i}\left\langle A \delta_{i}, \delta_{i}\right\rangle .
$$

- For $i=0,1, \ldots, k-2$, we have $\left\langle\nabla f\left(x_{i+1}\right), \nabla f\left(x_{k}\right)\right\rangle=\left\langle\nabla f\left(x_{i}\right), \nabla f\left(x_{k}\right)\right\rangle=0$ by Lemma 2, hence

$$
0=\alpha_{i}\left\langle A \delta_{i}, \delta_{i}\right\rangle \quad \stackrel{A \succ 0}{\Longrightarrow} \quad \alpha_{i}=0 .
$$

- For $i=k-1$, we have

$$
h_{k}\left\langle\nabla f\left(x_{k}\right)-\nabla f\left(x_{k-1}\right), \nabla f\left(x_{k}\right)\right\rangle=\alpha_{k-1} \underbrace{\left\langle A \delta_{k-1}, \delta_{k-1}\right\rangle}_{\neq 0 \text { as } A \succ 0} \text {. }
$$

Note that $\left\langle\nabla f\left(x_{k-1}\right), \nabla f\left(x_{k}\right)\right\rangle=0$, hence

$$
\alpha_{k-1}=\frac{h_{k}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}}{\left\langle A \delta_{k-1}, \delta_{k-1}\right\rangle}=\frac{h_{k}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}}{\left\langle\nabla f\left(x_{k}\right)-\nabla f\left(x_{k-1}\right), \delta_{k-1}\right\rangle} .
$$

Combining, we obtain that

$$
\begin{align*}
x_{k+1} & =x_{k}-h_{k} \nabla f\left(x_{k}\right)+\alpha_{k-1} \delta_{k-1}  \tag{1}\\
& =x_{k}-h_{k} \underbrace{\left(\nabla f\left(x_{k}\right)-\frac{\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}}{\left\langle\nabla f\left(x_{k}\right)-\nabla f\left(x_{k-1}\right), \delta_{k-1}\right\rangle} \delta_{k-1}\right)}_{=: p_{k}},
\end{align*}
$$

where $p_{k} \in \mathbb{R}^{d}$ is viewed as the search direction and $h_{k} \in \mathbb{R}$ is viewed as the stepsize. Since $x_{k}-h p_{k} \in x_{0}+\mathcal{K}_{k+1}$ for all $h$ and $x_{k+1}$ minimizes $f(x)$ over $\mathcal{K}_{k+1}$, the stepsize $h_{k}$ is given by exact line search:

$$
h_{k}=\arg \min _{h \in \mathbb{R}} f\left(x_{k}-h p_{k}\right) .
$$

Explicit form of CG: In summary, CG can be implemented as

$$
x_{k+1}=x_{k}-h_{k} p_{k},
$$

where

$$
\begin{aligned}
p_{k} & =\nabla f\left(x_{k}\right)-\frac{\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}}{\left\langle\nabla f\left(x_{k}\right)-\nabla f\left(x_{k-1}\right), \delta_{k-1}\right\rangle} \delta_{k-1}, \\
\delta_{k-1} & =x_{k}-x_{k-1} \\
h_{k} & =\arg \min _{h \in \mathbb{R}} f\left(x_{k}-h p_{k}\right) .
\end{aligned}
$$

Note that the exact line search step involves optimizing a one-dimensional quadratic function and can be computed in closed form.

Question 1. How much storage is needed in CG? How much computation per iteration?
Remark 1 (Conjugacy). The search directions $p_{k}=-\frac{1}{h_{k}} \delta_{k}$ are conjugate w.r.t. $A$ :

$$
\left\langle A p_{k}, p_{i}\right\rangle=0, \quad \forall k \neq i
$$

since $\left\langle A \delta_{k}, \delta_{i}\right\rangle=0$ (Lemma 4).

Remark 2 (Relation to heavy-ball). From (1) we have

$$
x_{k+1}=x_{k}-h_{k} \nabla f\left(x_{k}\right)+\alpha_{k-1}\left(x_{k}-x_{k-1}\right),
$$

which resembles the heavy-ball method (gradient step + momentum step) but with time-varying $h_{k}$ and $\alpha_{k}$.
Remark 3. CG does not require knowing the smoothness and strong convexity parameters $L$ and m.

Remark 4. CG for quadratic $f$ has a very rich convergence theory beyond the asymptotic linear rate. For example:

- If $A$ has $r$ distinct eigenvalues, CG terminates in at most $r$ iterations.
- More generally, CG converges fast when the eigenvalues of $A$ have a clustering structure.
- Precondition CG: one may transform the problem so that $A$ has a more favorable eigenvalue distribution.

We will not delve into these results; see Chapter 5.1 of Nocedal-Wright.

## 3 Extension to non-quadratic functions

We have written CG in a form that only involves the gradient of $f$, without explicit dependence on the quadratic structure of $f$. This allows extension to non-quadratic functions. (Such extensions are known as "nonlinear CG", since $\nabla f(x)$ is nonlinear in $x$.)

## Algorithm 1 Nonlinear CG

- Initial search direction: $p_{0}=\nabla f\left(x_{0}\right)$.
- For $k=0,1, \ldots$
- Set

$$
x_{k+1}=x_{k}-h_{k} p_{k},
$$

where $h_{k}$ is computed by (exact or inexact) line search.

- Compute the next search direction as

$$
p_{k+1}=\nabla f\left(x_{k+1}\right)-\beta_{k} p_{k},
$$

with some specific choice of $\beta_{k}$ (see below).

There are different ways of choosing $\beta_{k}$ 's:

- Dai-Yuan: $\beta_{k}=\frac{\left\|\nabla f\left(x_{k+1}\right)\right\|_{2}^{2}}{\left\langle\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right), p_{k}\right\rangle}$. (equivalent to the $\alpha_{k-1}$ that we derived for quadratic $f$ )
- Fletcher-Rieves: $\beta_{k}=-\frac{\left\|\nabla f\left(x_{k+1}\right)\right\|_{2}^{2}}{\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}}$.
- Polak-Ribiere: $\beta_{k}=-\frac{\left\langle\nabla f\left(x_{k+1}\right), \nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right\rangle}{\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}}$.

All of above lead to the same results in the case of quadratic $f$. See Chapter 5.2 of Nocedal-Wright for more on nonlinear CG.

Nonlinear CG is attractive in practice: it does not require matrix storage and performs well empirically (e.g., faster than GD). Theoretical results are not as strong as AGD-this is a topic for further research.

