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Lecture 14: Constrained Optimization over Closed Convex
Sets

Yudong Chen

Consider the constrained problem
min
x∈X

f (x), (P)

where f is continuously differentiable and X ⊆ dom( f ) ⊆ Rd is a closed, convex and nonempty
set.

Recall:

Definition 1 (Local minimizer). We say that x∗ ∈ X ⊆ dom( f ) is a local minimizer/solution of (P) if
there exists a neighborhood Nx∗ of x∗ such that we have f (x) ≥ f (x∗), ∀x ∈ Nx∗ ∩ X .

For constrained problem, if x∗ is a (local) minimizer of (P), it is not necessary that∇ f (x∗) = 0.
Example: f (x) = x,X = [2, 3], x∗ = 2,∇ f (x∗) = 1 6= 0.

1 Optimality condition

A cone is a set that satisfies the following property: if z is in the set, then for any t > 0, tz is also in
the set.

The optimality condition for constrained optimization would involve a special cone.

Definition 2 (Normal cone). Let X be a closed convex set. At any point x ∈ X , the normal cone
NX (x) is defined by

NX (x) =
{

p ∈ Rd : 〈p, y− x〉 ≤ 0, ∀y ∈ X
}

.

Note that by definition,

−∇ f (x) ∈ NX (x)⇐⇒ 〈−∇ f (x), y− x〉 ≤ 0, ∀y ∈ X . (1)

If X = Rd, then (1) reduces to ∇ f (x∗) = 0.

Theorem 1 (Thm 7.2 in Wright-Recht). Consider the problem (P).

1. (1st-order necessary condition) If x∗ ∈ X is a local solution to (P), then −∇ f (x∗) ∈ NX (x∗).

2. (1st-order sufficient condition) If f is convex, then −∇ f (x∗) ∈ NX (x∗) implies that x∗ is a global
solution to (P).

Any point x that satisfies (1) is called a stationary point for the constrained problem (P).
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Illustration of normal cones:

Proof. Part 1: Want to show: x∗ is a local solution =⇒ −∇ f (x∗) ∈ NX (x∗).
Proof by contradiction. Suppose −∇ f (x∗) 6∈ NX (x∗). By definition of NX (x∗), there exists

y ∈ X such that

〈−∇ f (x∗), y− x∗〉 ≥ δ > 0
⇐⇒〈∇ f (x∗), y− x∗〉 ≤ −δ.

For each α > 0, by Taylor’s Theorem we have

f
(

x∗ + α(y− x∗)︸ ︷︷ ︸
=(1−α)x∗+αy∈X

)
= f (x∗) + α 〈∇ f (x∗ + γα(y− x∗)), y− x∗〉

for some γ ∈ (0, 1). Because ∇ f is continuous, for all α > 0 sufficiently small:

〈∇ f (x∗ + γα(y− x∗)), y− x∗〉 ≤ − δ

2
.

It follows that
f
(

x∗ + α(y− x∗)
)
≤ f (x∗)− αδ

2
< f (x∗),

which means x∗ cannot be a local solution, a contradiction.
Part 2: Want to show:

f is convex︸ ︷︷ ︸
(i)

and −∇ f (x∗) ∈ NX (x∗)︸ ︷︷ ︸
(ii)

=⇒ x∗ is a global solution

From (i): ∀x, y ∈ Rd: f (y) ≥ f (x) + 〈∇ f (x), y− x〉. In particular, for x = x∗:

∀y ∈ X : f (y) ≥ f (x∗) + 〈∇ f (x∗), y− x∗〉 .

From (ii):
∀y ∈ X : 〈−∇ f (x∗), y− x∗〉 ≤ 0⇐⇒ 〈∇ f (x∗), y− x∗〉 ≥ 0.

(i)+(ii) gives f (y) ≥ f (x∗), ∀y ∈ X .
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For strongly convex f , the minimizer is unique.

Theorem 2 (Thm 7.3 in Wright-Recht). Consider (P) and assume, in addition, that f is strongly convex.
Then (P) has a unique global minimizer. Moreover, x∗ is the global minimizer if and only if −∇ f (x∗) ∈
NX (x∗).

Proof. Recall that Strong convexity means there exists m > 0 such that

∀x, y : f (y) ≥ f (x) + 〈∇ f (x), y− x〉+ m
2
‖y− x‖2

2 .

Existence of global solution: Fix an arbitrary x ∈ X . Consider any y such that f (y) ≤ f (x).
We have

‖y− x‖2
2 ≤

2
m

(
f (y)− f (x)︸ ︷︷ ︸

≤0

− 〈∇ f (x), y− x〉
)

≤ 2
m
‖∇ f (x)‖2 ‖y− x‖2 . Cauchy-Schwarz

Hence
‖y− x‖2 ≤

2
m
‖∇ f (x)‖2 < ∞.

Thus, the set {y ∈ X | f (y) ≤ f (x)} is closed and bounded =⇒ compact =⇒ a global minimizer
x∗ exists by Weierstrass theorem.

“only if” part: follows from Theorem 1.
“if part” and uniqueness. Apply strong convexity to x = x∗:

∀y ∈ X : f (y) ≥ f (x∗) + 〈∇ f (x∗), y− x∗〉︸ ︷︷ ︸
≥0

+
m
2
‖y− x∗‖2

2

≥ f (x∗) +
m
2
‖y− x∗‖2

2 ,

where 〈∇ f (x∗), y− x∗〉 ≥ 0 because −∇ f (x∗) ∈ NX (x∗). Therefore, f (y) ≥ f (x∗), and equality
holds if and only if y = x∗.

2 Euclidean (orthogonal) projection

The Euclidean projection of x onto the (closed and convex) set X is defined
as

PX (x) = argmin
y∈X

{‖y− x‖2}

= argmin
y∈X

{
1
2
‖y− x‖2

2

}
.

By Theorem 2:

• PX (x) exists and is unique, since we are minimizing a strongly convex
function over a closed convex set.
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• Furthermore, PX (x) satisfies the first-order optimality condition

∀y ∈ X : 〈PX (x)− x, y− PX (x)〉 ≥ 0 (2)
m
− (PX (x)− x) ∈ NX (PX (x)) .

• The converse is also true: if some x̄ satisfies 〈x̄− x, y− x̄〉 ≥ 0, ∀y ∈ X ,
then we must have x̄ = PX (x).

Equation (2), which fully characterizes PX (x), is also known as the minimum principle. Illustration:

2.1 Examples

Some examples of X for which the associated projection is easy to compute.

2.1.1 Non-negative orthant

X =
{

x ∈ Rd | x ≥ 0 element-wise
}

.

Claim 1. PX (x) = max
{

x,~0
}

, where the max is elementwise.

Proof. Check (2):

∀y ∈ X : 〈PX (x)− x, y− PX (x)〉

=
d

∑
i=1

(max{xi, 0} − xi) (yi −max{xi, 0})

≥ 0,
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where the last inequality holds because

max{xi, 0} − xi

{
= 0 if xi ≥ 0
= −xi > 0 if xi < 0

and

yi −max {xi, 0}
{
= yi − xi if xi ≥ 0
= yi ≥ 0 if xi < 0

2.1.2 Hyper-rectangle

X =
{

x ∈ Rd | ∀i ∈ {1, . . . , d} : xi ∈ [ai, bi]
}

, where ai < bi. See HW4.

2.1.3 Euclidean ball

X =
{

x ∈ Rd | ‖x‖2 ≤ 1
}

. Then

PX (x) =

{
x, if x ∈ X

x
‖x‖2

if x 6∈ X

Exercise 1. What if the ball was of radius R > 0? What if the ball was not centered at zero?

2.1.4 `1 ball

X =
{

x ∈ Rd | ‖x‖1 ≤ 1
}

. Then PX (x) can be computed with O (d log d) arithmetic operations
(involves sorting).
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2.1.5 Probability simplex

X =
{

x ∈ Rd | x ≥ 0, ∑d
i=1 xi = 1

}
. (A picture) Similar to `1 ball. Computable in O (d log d).

2.2 PX is nonexpansive

Proposition 1 (Prop 7.7 in Wright-Recht). Let X be a closed, convex and nonempty set. Then PX (·) is
a non-expansive operator, i.e.,

∀x, y ∈ Rd : ‖PX (x)− PX (y)‖2 ≤ ‖x− y‖2 .

Illustrations:

Proof. Equivalently, want to show that

‖x− y‖2
2 ≥ ‖PX (x)− PX (y)‖2

2 .

We have

‖x− y‖2
2 = ‖x− PX (x)− (y− PX (y)) + PX (x)− PX (y)‖2

2

= ‖x− PX (x)− (y− PX (y))‖2
2︸ ︷︷ ︸

≥0

+ ‖PX (x)− PX (y)‖2
2

+ 2 〈x− PX (x), PX (x)− PX (y)〉︸ ︷︷ ︸
≥0

+2 〈y− PX (y), PX (y)− PX (x)〉︸ ︷︷ ︸
≥0

≥‖PX (x)− PX (y)‖2
2 ,

where we use the minimum principle (2) to lower bound the two inner products.
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Remark 1 (Firmly nonexpansive). The proof above shows that PX (·) actually satisfies a stronger
property: it is firmly nonexpansive, in the sense that

‖PX (x)− PX (y)‖2
2 + ‖x− PX (x)− (y− PX (y))‖2

2 ≤ ‖x− y‖2
2 .

In particular, if y ∈ X , then

‖PX (x)− y‖2
2 + ‖x− PX (x)‖2

2 ≤ ‖x− y‖2
2

and hence the strict inequality ‖PX (x)− y‖2
2 < ‖x− y‖2

2 holds whenever x /∈ X .
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