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Lecture 14: Constrained Optimization over Closed Convex
Sets

Yudong Chen

Consider the constrained problem

min f (x), (P)

where f is continuously differentiable and X C dom(f) C R is a closed, convex and nonempty
set.
Recall:

Definition 1 (Local minimizer). We say that x* € X C dom(f) is a local minimizer/solution of (P) if
there exists a neighborhood Ny of x* such that we have f(x) > f(x*),Vx € Ny- N X.

For constrained problem, if x* is a (local) minimizer of (P), it is not necessary that V f(x*) = 0.
Example: f(x) = x, X = [2,3],x* =2,Vf(x*) =1 #0.

1 Optimality condition

A cone is a set that satisfies the following property: if z is in the set, then for any t > 0, ¢z is also in
the set.
The optimality condition for constrained optimization would involve a special cone.

Definition 2 (Normal cone). Let X be a closed convex set. At any point x € X, the normal cone
Ny (x) is defined by

Ny(x) = {p ERY: (py—x) <0,Vy € X}.
Note that by definition,
—Vf(x) € Ny(x) <= (=Vf(x),y—x) <0,Vy € X. (1)
If X = R, then (1) reduces to Vf(x*) = 0.
Theorem 1 (Thm 7.2 in Wright-Recht). Consider the problem (P).
1. (1st-order necessary condition) If x* € X is a local solution to (P), then —V f(x*) € Ny (x*).

2. (1st-order sufficient condition) If f is convex, then —V f(x*) € Ny (x*) implies that x* is a global
solution to (P).

Any point x that satisfies (1) is called a stationary point for the constrained problem (P).
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[llustration of normal cones:

d xeint (X)
thea NX(") = { Oj )

Proof. Part 1: Want to show: x* is a local solution = —V f(x*) € Ny (x*).
Proof by contradiction. Suppose —V f(x*) ¢ Nx(x*). By definition of Ny (x*), there exists
y € & such that

For each & > 0, by Taylor’s Theorem we have
f( Faly=x)) = F(x) +a (VFx +7aly —x)),y — =)
—_—
=(1—a)x*4ayeX

for some y € (0,1). Because V f is continuous, for all « > 0 sufficiently small:

(Vf (x4 7aly ')y — ') <~

It follows that 5
f(x +aly—x9) < (") = 5 < fx),

which means x* cannot be a local solution, a contradiction.
Part 2: Want to show:

fisconvex and —Vf(x*) € Ny(x*) = x" is a global solution

@) (ii)
From (i): Vx,y € R f(y) > f(x) + (Vf(x),y — x). In particular, for x = x*:
ye X fly) 2 f(x7) +{Vf(x")y —x7).

From (ii):
Vye X: (=Vf(x"),y—x") <0< (Vf(x"),y—x") >0.

(i)+(ii) gives f(y) > f(x*),Vy € X. d
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For strongly convex f, the minimizer is unique.

Theorem 2 (Thm 7.3 in Wright-Recht). Consider (P) and assume, in addition, that f is strongly convex.
Then (P) has a unique global minimizer. Moreover, x* is the global minimizer if and only if —V f(x*) €
Ny (x * )

Proof. Recall that Strong convexity means there exists m > 0 such that
m
Yxy f(y) 2 F00) + (V0 —x) + 5 lly =«

Existence of global solution: Fix an arbitrary x € X'. Consider any y such that f(y) < f(x).
We have

Hy—wﬁéi(ﬂﬂifwrwvﬂ@w—xﬂ
< % IVFEy ly — ]| - Cauchy-Schwarz

Hence 2
ly =l = V()] < eo.

Thus, the set {y € X' | f(y) < f(x)} is closed and bounded = compact = a global minimizer
x* exists by Weierstrass theorem.

“only if” part: follows from Theorem 1.

“if part” and uniqueness. Apply strong convexity to x = x*:

Yy € X fly) = f) + (V) y =3+ 5 ly — I3

>0
* m *
> f(x") + 5 lly =713,
where (Vf(x*),y — x*) > 0 because —V f(x*) € Ny(x*). Therefore, f(y) > f(x*), and equality
holds if and only if y = x*. O
2 Euclidean (orthogonal) projection

The Euclidean projection of x onto the (closed and convex) set & is defined
as

Py (x) = argmin {|ly — x|/}
yeX

.1 2
= argmin 3 = [ly — x5 { -
yeX

By Theorem 2:

e Py(x) exists and is unique, since we are minimizing a strongly convex
function over a closed convex set.
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e Furthermore, Py (x) satisfies the first-order optimality condition
Vye X: (Py(x)—xy—Px(x)) >0 ()
)

— (Px(x) —x) € Ny (Px(x)).

e The converse is also true: if some ¥ satisfies (¥ — x,y — %) > 0,Vy € X,
then we must have ¥ = Py (x).

Equation (2), which fully characterizes Py (x), is also known as the minimum principle. Illustration:

2.1 Examples

Some examples of X for which the associated projection is easy to compute.

2.1.1 Non-negative orthant

X = {x € R? | x > 0 element-wise} .

*a

W o m e Py )
o X= Px,(")

1/\ l'"i ><I

Claim 1. Py(x) = max {x, 6}, where the max is elementwise.

Proof. Check (2):

Vy € X 1 (Px(x) — x,y — Px(x))
d

1 (max{x;, 0} — xi) (y; — max{x;,0})

1

0,

v
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where the last inequality holds because
= if x; >
max{x;, 0} — x; 0 1 X 20
=—x; >0 ifx; <0

and

— vy —x ifx >
y; —max{x;, 0} i = 0
:]/iZO ifx; <0

2.1.2 Hyper-rectangle
X={xeR|Vie{l,...,d}:x; € [a;, ]}, where a; < b;. See HW4.

AX:.
Al L—-*‘-~L/—\J'
i .
! L
0 b, 7 'X'
2.1.3 Euclidean ball
X ={x€eR?||x|, <1}. Then
Py() {x, ifxe X
x\X) = .
m ifx g X

Exercise 1. What if the ball was of radius R > 0? What if the ball was not centered at zero?

214 / ball

X = {x € R?| ||x||; < 1}. Then Py(x) can be computed with O (dlogd) arithmetic operations
(involves sorting).
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N

2.1.5 Probability simplex

X = {x eERY | x>0,Y%  x; = 1}. (A picture) Similar to ¢; ball. Computable in O (dlogd).

2.2 Py is nonexpansive

Proposition 1 (Prop 7.7 in Wright-Recht). Let X be a closed, convex and nonempty set. Then Py (-) is
a non-expansive operator, i.e.,

v,y € R [|Py(x) = Px(y)]l, < [lx — yll,.-

Ilustrations:

Proof. Equivalently, want to show that

I —y))? > || Px(x) — Pr(y)| 3.

We have
= yll3 =1lx = Px(x) = (y = Pa(y)) + Pr(x) = Px()]l3
=[x = Pr(x) — (v — Pr(y))I + 1P (x) = Px (9)1
>0
+2(x — Py (x), Px(x) = Px(y)) +2 {y — Px(y), Px(y) — Px(x))
>0 >0

> [P (x) = Px (9113,

where we use the minimum principle (2) to lower bound the two inner products. O
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Remark 1 (Firmly nonexpansive). The proof above shows that Py(-) actually satisfies a stronger
property: it is firmly nonexpansive, in the sense that

1P (x) — Px(y)|l5 + l|lx — Pe(x) — (y — Px()I5 < [lx = yll3.-

In particular, if y € X, then
2 2 2
[Px(x) = yllz + llx = Px(x)[l3 < [[x — ¥l

and hence the strict inequality ||Py(x) — yHg < lx — yH% holds whenever x ¢ X.
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