
UW-Madison CS/ISyE/Math/Stat 726 Spring 2024

Lecture 16: Frank-Wolfe (aka Conditional Gradient) Method

Yudong Chen

1 Setup

Consider the constrained problem
min
x∈X

f (x), (P)

We still assume that f is L-smooth and convex, and X is closed, convex and non-empty.
In many settings, computing projection ontoX is expensive, but linear optimization minx∈X c>x

is easy. This is typical when X is a polytope
{

x ∈ Rd : a>i x ≤ bi, i = 1, . . . , m
}

.
Examples:

• Probability simplex and `1 ball: Projection uses Θ(d log d) arithmetics operations (sorting).
Linear optimization oracle only takes Θ(d) (finding the smallest element of the gradient c).
This is not a dramatic difference, but linear optimization has other benefits such as sparsity
of solution. See Section 5.

• For some polytopes, projection (exactly) is computationally hard, but LP is poly-time. E.g.,
matching polytope for a general graph with |V| vertices has ∼ 2|V| constraints, but LP is
tractable (e.g., using Edmonds’ algorithm).

Frank-Wolfe (FW) method uses a linear optimization oracle instead of a projection oracle.

2 Frank-Wolfe method

Algorithm 1 Frank-Wolfe

• Input: initial point x0 ∈ X , algorithm parameters ak > 0, k = 0, 1, . . .

• For k = 0, 1, . . .

vk = argmin
u∈X

〈∇ f (xk), u〉 ,

xk+1 =
Ak−1

Ak
xk +

ak

Ak
vk,

where Ak = ∑k
i=0 ai = Ak−1 + ak.

Observe that vk ∈ X by definition, hence

xk+1 =

(
1− ak

Ak

)
xk +

ak

Ak
vk ∈ X , ∀k

by convexity of X and induction.
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3 Convergence rate of Frank-Wolfe

We introduce a new style of analysis.

1. We will maintain an upper bound Uk ≥ f (xk+1) and a lower bound Lk ≤ f (x∗). Conse-
quently, the difference Gk := Uk − Lk is an upper bound on the optimality gap f (xk+1) −
f (x∗).

2. Recall that Ak := ∑k
i=0 ai, which is strictly increasing in k. We will show that

AkGk ≤ Ak−1Gk−1 + Ek,

where Ek is some “error” term. This implies that

Gk ≤
A0G0 + ∑k

i=1 Ei

Ak
.

3. We will choose {ak} so that A0G0 + ∑k
i=1 Ei grows slowly with k compared to Ak, hence Gk

converges to 0 quickly.

Let us apply the above strategy to FW.

Upper bound: Simply take Uk = f (xk+1). Then

AkUk − Ak−1Uk−1 = Ak f (xk+1)− Ak−1 f (xk).

Lower bound: We have

f (x∗) ≥ 1
Ak

k

∑
i=0

ai

(
f (xi) + 〈∇ f (xi), x∗ − xi〉

)
convexity of f

weighted average of lower bounds is also a lower bound

≥ 1
Ak

k

∑
i=0

ai f (xi) +
1

Ak

k

∑
i=0

ai min
u∈X
〈∇ f (xi), u− xi〉

=
1

Ak

k

∑
i=0

ai f (xi) +
1

Ak

k

∑
i=0

ai 〈∇ f (xi), vi − xi〉 definition of vi

=: Lk.

Then
AkLk − Ak−1Lk−1 = ak f (xk) + ak 〈∇ f (xk), vk − xk〉 .

Evolution of AkGk: Define D := maxx,y∈X ‖x− y‖2, which is the diameter of X . Then for k ≥ 1:

AkGk − Ak−1Gk−1

= (AkUk − Ak−1Uk−1)− (AkLk − Ak−1Lk−1)

=Ak ( f (xk+1)− f (xk))− ak 〈∇ f (xk), vk − xk〉 Ak−1 + ak = Ak

≤
hhhhhhhhhhhh
Ak 〈∇ f (xk), xk+1 − xk〉+

AkL
2
‖xk+1 − xk‖2

2 −
hhhhhhhhhh
ak 〈∇ f (xk), vk − xk〉 smoothness of f

(i)
=

a2
k L

2Ak
‖vk − xk‖2

2

≤
a2

k L
2Ak

D2, ←− this is Ek (1)
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where (i) holds because

xk+1 =
Ak−1

Ak
xk +

ak

Ak
vk ⇐⇒ Ak(xk+1 − xk) = ak(vk − xk) =⇒ xk+1 − xk =

ak

Ak
(vk − xk).

(Exercise) Using similar argument as above, verify yourself that

A0G0 ≤
a2

0L
2A0

D2. (2)

Final bound: Summing (1) over k and (2), we get

AkGk ≤
k

∑
i=0

a2
i L

2Ai
D2

=⇒ f (xk+1)− f (x∗) ≤ Gk ≤
LD2

2
· 1

Ak

k

∑
i=0

a2
i

Ai
.

We want to choose {ai} to make RHS to decay fast with k. Different choices work, but whenever

you see something like a2
i

Ai
, you should try ai ∝ i =⇒ Ai ∝ i2, a2

i
Ai
≈ 1. In particular, setting

ai = i + 1, we have Ai =
(i+1)(i+2)

2 and hence

f (xk+1)− f (x∗) ≤ LD2

(k + 1)(k + 2)

k

∑
i=0

2(i + 1)2

(i + 1)(i + 2)︸ ︷︷ ︸
≤2(k+1)

≤ 2LD2

k + 2
.

Therefore, we get an O
(

LD2

k

)
convergence rate. Equivalently, FW achieves f (xk)− f (x∗) ≤ ε after

at most O
(

LD2

ε

)
iterations.

4 Lower bound

Is it possible to beat FW? Not in the worst case, if we are only accessingX via a linear optimization
oracle.

Theorem 1. Consider any algorithm that accesses the feasible set X only via a linear optimization oracle.
There exists an L-smooth convex function function f : Rd → R such that this algorithm requires at least

min
{

d
2

,
LD2

16ε

}
iterations (i.e., calls to the linear optimization oracle) to construct a point x̂ ∈ X with f (x̂)−minx∈X f (x) ≤
ε. The lower bound applies even if f is strongly convex.

Proof sketch. Take f (x) = 1
2 ‖x‖

2
2 and X =

{
x ∈ Rd : x ≥ 0, ∑d

i=1 xi = 1
}

(the probability simplex).
Note that the smoothness parameter of f is L = 1, the diameter of X is D = 2, and f is strongly
convex. Moreover, the optimal solution and value are

x∗ =
1
d

1 =
1
d

d

∑
i=1

ei, f (x∗) =
1

2d
,
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where ei = (0, . . . , 0, 1, 0, . . . , 0)> denotes the i-th standard basis vector.
Linear optimization over the polytope X returns one of its vertex ei. After k iterations, one

would only uncover k basis vectors ei1 , ei2 , . . . , eik . The best solution one can construct from them
is x̂ = 1

k ∑k
j=1 eij , hence

f (x̂)− f (x∗) ≥ 1
2

(
1

min{k, d} −
1
d

)
.

To make the RHS ≤ ε, we need k ≥ min
{

d
2 , 1

4ε

}
= min

{
d
2 , LD2

16ε

}
.

See Lan ’13 for the complete proof.

5 Additional remarks

FW was out of favor for a long time, as it has sublinear convergence even when f is strongly
convex. However, there has been a recent upsurge of activity on FW.

• A sublinear rate is acceptable in many machine learning and data science problems with
large-scale and noisy data.

• The optimal solution vk of linear optimization lies at a vertex of the feasible set X . Such a
solution often has certain sparsity properties not possessed by projection onto X . Sparsity
often leads to better computational and statistical efficiency. For example:

– When X is the probability simplex or `1 ball, each vi is 1-sparse (has only 1 nonzero
entry). Consequently, the iterate xk of FW is k-sparse since it is a convex combination
of {v1, . . . , vk}.

– The nuclear norm ‖x‖nuc of a matrix x is defined as the sum of its singular values. When
X =

{
x ∈ Rd×d : ‖x‖nuc ≤ R

}
is the nuclear norm ball, each vi is a rank-1 matrix, hence

xk has rank at most k.

• Conservative Policy Iteration (CPI), a basic algorithm in Reinforcement Learning, is an incar-
nation of FW. See this short paper on the connection between several reinforcement learning
and constrained optimization algorithms (including CPI and FW).
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