Lecture 17: Nonsmooth Optimization

Yudong Chen

All methods we have seen so far work under the assumption that the objective function f is smooth and in particular differentiable. In this lecture, we consider nonsmooth functions.

Examples include the absolute value $f(x)=|x|$ and more generally the ℓ_{1} norm $f(x)=\|x\|_{1}=$ $\sum_{i=1}^{d}|x(i)|=\sum_{i=1}^{d} \max \{x(i),-x(i)\},{ }^{1}$ as well as the so-called Rectified Linear Unit $(\operatorname{ReLU}) f(x)=$ $\max \{x, 0\}$. In general, the maximum of (finitely many) smooth functions is a nonsmooth function.

1 Nonsmooth optimization

Consider the problem

$$
\begin{equation*}
\min _{x \in \mathcal{X}} f(x) . \tag{P}
\end{equation*}
$$

Assumptions:

- f is M-Lipschitz continuous for some $M \in(0, \infty)$, i.e.,

$$
|f(x)-f(y)| \leq M\|x-y\|, \quad \forall x, y \in \operatorname{dom}(f)
$$

under some norm $\|\cdot\|$, whose dual norm is $\|\cdot\|_{*}$. Here, $\|\cdot\|$ can be an arbitrary norm. Later when we discuss the projected subgradient descent method, we will restrict to the ℓ_{2} norm.

- f is convex and minimized by some $x^{*} \in \operatorname{argmin}_{x \in \mathcal{X}} f(x)$.
- $\mathcal{X} \subseteq \mathbb{R}^{d}$ is closed, convex and non-empty, and we can efficiently compute projection onto \mathcal{X}.

In this setting, f is not necessarily differentiable. But, it is subdifferentiable.

2 Subdifferentiability

Definition 1. We say that a convex function $f: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ is subdifferentiable at $x \in \operatorname{dom}(f)$ if there exists $g_{x} \in \mathbb{R}^{d}$ such that

$$
\forall y \in \mathbb{R}^{d}: \quad f(y) \geq f(x)+\left\langle g_{x}, y-x\right\rangle .
$$

Such a vector g_{x} is called a subgradient of f at x. The set of all subgradients of f at x is called the subdifferential of f at x and denoted by $\partial f(x)$.

[^0]Example 1. Let $f(x)=|x|$ be the absolute value function. Then

$$
\partial f(x)= \begin{cases}\{1\} & x>0 \\ \{-1\} & x<0 \\ {[-1,1]} & x=0\end{cases}
$$

Exercise 1. What is $\partial f(x)$ for the function $f(x)=\max \{x, 0\}$?
It is easy to see that if f is in fact convex and differentiable, then $\partial f(x)=\{\nabla f(x)\}$ is a singleton.

2.1 Optimality condition

For a differentiable convex function f, we know from previous lectures that x^{*} is a minimizer if and only if $\nabla f\left(x^{*}\right)=0$. The following theorem provides a generalization to potentially nondifferentiable functions.

Theorem 1. For a convex function f, a point x^{*} is a minimizer if and only if $0 \in \partial f\left(x^{*}\right)$.
Proof. Observe that

$$
\begin{aligned}
& 0 \in \partial f\left(x^{*}\right) \\
\Longleftrightarrow & f(y) \geq f\left(x^{*}\right)+\left\langle 0, y-x^{*}\right\rangle, \forall y \quad \quad \text { by Definition } 1 \\
\Longleftrightarrow & x^{*} \text { is a minimizer } \quad
\end{aligned}
$$

2.2 Properties of subdifferential (optional)

The subdifferential has many important properties. We discuss a few of them below; see WrightRecht Sections 8.2-8.4 for more.

Fact 1. Every convex lower semicontinuous function is subdifferentiable everywhere on the interior its domain.
Example 2. Let $I_{\mathcal{X}}(x)=\left\{\begin{array}{ll}0, & x \in \mathcal{X}, \\ \infty, & x \notin \mathcal{X},\end{array}\right.$ be the indicator function of a closed convex nonempty set \mathcal{X}. Then for each $x \in \mathcal{X}, \partial I_{\mathcal{X}}(x)=N_{\mathcal{X}}(x)$, where $N_{\mathcal{X}}(x)$ is the normal cone at x.

For smooth functions, the gradient has a linearity property: $\nabla(a f+b h)(x)=a \nabla f(x)+$ $b \nabla h(x)$. A similar property holds for the subdifferential.

Fact 2 (Linearity). For any two convex functions f, h and any positive constants a, b, we have

$$
\partial(a f+b h)(x)=a \partial f(x)+b \partial(x)=\left\{a g+b g^{\prime}: g \in \partial f(x), g^{\prime} \in \partial h(x)\right\}
$$

for x in the interior of $\operatorname{dom}(f) \cap \operatorname{dom}(g)$.

Exercise 2. What is $\partial f(x)$ for the ℓ_{1} norm $f(x)=\|x\|_{1}:=\sum_{i=1}^{d}\left|x_{i}\right|$?
With the above facts, we can unify the first-order optimality conditions for constrained and unconstrained problems:

$$
\begin{array}{rlr}
& -\nabla f(x) \in N_{\mathcal{X}}(x) & \\
\Longleftrightarrow & -\nabla f(x) \in \partial I_{\mathcal{X}}(x) & \\
\Longleftrightarrow & \text { by Exercise } 2 \\
\Longleftrightarrow & 0 \in \partial f(x)+\partial I_{\mathcal{X}}(x) & \\
& \text { by Fact } 2
\end{array}
$$

2.3 Lipschitz continuity

The theorem below relates the subgradients and Lipschitz continuity.
Theorem 2. Let $f: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ be a convex function. f is M-Lipschitz-continuous w.r.t a norm $\|\cdot\|$ if and only if

$$
(\forall x \in \operatorname{dom}(f))\left(\forall g_{x} \in \partial f(x)\right): \quad\left\|g_{x}\right\|_{*} \leq M
$$

Proof. \Longrightarrow direction. Suppose f is M-Lipschitz. Fix any x and $g_{x} \in \partial f(x)$. By definition of subgradient and the LIpschitz property, we have

$$
\left\langle g_{x}, u\right\rangle \leq f(x+u)-f(x) \leq M\|u\|, \quad \forall u
$$

hence

$$
\begin{aligned}
\left\|g_{x}\right\|_{*} & =\max _{u:\|u\|=1}\left\langle g_{x}, u\right\rangle \quad \text { definition of dual norm } \\
& \leq \max _{u:\|u\|=1} M\|u\|=M
\end{aligned}
$$

$\Longleftarrow \operatorname{direction.~Assume~that~}(\forall x \in \operatorname{dom}(f))\left(\forall g_{x} \in \partial f(x)\right):\left\|g_{x}\right\|_{*} \leq M$. Then for all y :

$$
\begin{aligned}
f(y) & \geq f(x)+\left\langle g_{x}, y-x\right\rangle \\
\Longrightarrow & f(x)-f(y) \leq\left\langle g_{x}, x-y\right\rangle \leq\left\|g_{x}\right\|_{*}\|x-y\| \leq M\|x-y\| .
\end{aligned}
$$

Switching the roles of x and y gives

$$
f(y)-f(x) \leq\left\langle g_{y}, y-x\right\rangle \leq\left\|g_{y}\right\|_{*}\|y-x\| \leq M\|y-x\| .
$$

Combining gives $|f(x)-f(y)| \leq M\|x-y\|$.

3 Projected subgradient descent

For the rest of the lecture, we assume f is M-Lipschitz w.r.t. the Euclidean ℓ_{2} norm $\|\cdot\|_{2}$.
We consider the following projected subgradient descent (PSubGD) method:

$$
\begin{aligned}
x_{k+1} & =\underset{y \in \mathcal{X}}{\operatorname{argmin}}\left\{a_{k}\left\langle g_{x_{k}}, y-x_{k}\right\rangle+\frac{1}{2}\left\|y-x_{k}\right\|_{2}^{2}\right\} \\
& =P_{\mathcal{X}}\left(x_{k}-a_{k} g_{x_{k}}\right),
\end{aligned}
$$

where one may take any subgradient $g_{x_{k}}$ from the set $\partial f\left(x_{k}\right)$, and $a_{k}>0$ is the stepsize.

Without smoothness, we cannot get a descent lemma. In particular, it is not necessarily true that $f\left(x_{k+1}\right) \leq f\left(x_{k}\right)$. Nevertheless, we can still argue about convergence for the (weighted) average of the iterates, defined as

$$
x_{k}^{\text {out }}:=\frac{1}{A_{k}} \sum_{i=0}^{k} a_{i} x_{i}
$$

where $A_{k}:=\sum_{i=0}^{k} a_{i}$.

3.1 Convergence rate

We follow the proof strategy introduced in the Frank-Wolfe lecture and restated below.

General strategy:

1. Maintain an upper bound $U_{k} \geq f\left(x_{k}^{\text {out }}\right)$ and a lower bound $L_{k} \leq f\left(x^{*}\right)$.
2. With $G_{k}:=U_{k}-L_{k} \geq f\left(x_{k}^{\text {out }}\right)-f\left(x^{*}\right)$, show that

$$
A_{k} G_{k}-A_{k-1} G_{k-1} \leq E_{k} \Longrightarrow G_{k} \leq \frac{A_{0} G_{0}+\sum_{i=1}^{k} E_{i}}{A_{k}}
$$

3. Choose $\left\{a_{k}\right\}$ so that the above right hand decays to 0 fast.

By subdifferentiability and convexity, we have the lower bound

$$
L_{k}:=\frac{1}{A_{k}} \sum_{i=0}^{k} a_{i}\left(f\left(x_{i}\right)+\left\langle g_{x_{i}}, x^{*}-x_{i}\right\rangle\right) \leq f\left(x^{*}\right) .
$$

and the upper bound

$$
U_{k}:=\frac{1}{A_{k}} \sum_{i=0}^{k} a_{i} f\left(x_{i}\right) \geq f\left(\frac{1}{A_{k}} \sum_{i=0}^{k} a_{i} x_{i}\right)=f\left(x_{k}^{\text {out }}\right)
$$

Hence $f\left(x_{k}^{\text {out }}\right)-f\left(x^{*}\right) \leq U_{k}-L_{k}=: G_{k}$. It follows that

$$
\begin{aligned}
A_{k} G_{k}-A_{k-1} G_{k-1} & =-a_{k}\left\langle g_{x_{k}}, x^{*}-x_{k}\right\rangle \\
& =a_{k}\left\langle g_{x_{k}}, x_{k+1}-x^{*}\right\rangle+a_{k}\left\langle g_{x_{k}}, x_{k}-x_{k+1}\right\rangle .
\end{aligned}
$$

Recall $x_{k+1}=\operatorname{argmin}_{y \in \mathcal{X}}\left\{a_{k}\left\langle g_{x_{k}}, y\right\rangle+\frac{1}{2}\left\|y-x_{k}\right\|_{2}^{2}\right\}=P_{\mathcal{X}}\left(x_{k}-a_{k} g_{x_{k}}\right)$. By 1st-order optimality condition of x_{k+1} (equivalently, the minimum principle for projection):

$$
\left\langle x_{k+1}-x_{k}+a_{k} g_{x_{k}}, u-x_{k+1}\right\rangle \geq 0, \quad \forall u \in \mathcal{X}
$$

In particular, for $u=x^{*}$:

$$
\begin{aligned}
a_{k}\left\langle g_{x_{k}}, x_{k+1}-x^{*}\right\rangle & \leq\left\langle x_{k+1}-x_{k}, x^{*}-x_{k+1}\right\rangle \\
& =\frac{1}{2}\left\|x_{k}-x^{*}\right\|_{2}^{2}-\frac{1}{2}\left\|x_{k+1}-x^{*}\right\|_{2}^{2}-\frac{1}{2}\left\|x_{k+1}-x_{k}\right\|_{2}^{2}
\end{aligned}
$$

It follows that

$$
\begin{align*}
A_{k} G_{k}-A_{k-1} G_{k-1} \leq & \frac{1}{2}\left\|x_{k}-x^{*}\right\|_{2}^{2}-\frac{1}{2}\left\|x_{k+1}-x^{*}\right\|_{2}^{2} \\
& -\frac{1}{2}\left\|x_{k+1}-x_{k}\right\|_{2}^{2}+a_{k}\left\langle g_{x_{k}}, x_{k}-x_{k+1}\right\rangle \\
\leq & \frac{1}{2}\left\|x_{k}-x^{*}\right\|_{2}^{2}-\frac{1}{2}\left\|x_{k+1}-x^{*}\right\|_{2}^{2} \\
& -\frac{1}{2}\left\|x_{k+1}-x_{k}\right\|_{2}^{2}+a_{k} M\left\|x_{k}-x_{k+1}\right\|_{2} \quad \text { Cauchy-Schwarz, }\left\|g_{x_{k}}\right\|_{2} \leq M \\
\leq & \frac{1}{2}\left\|x_{k}-x^{*}\right\|_{2}^{2}-\frac{1}{2}\left\|x_{k+1}-x^{*}\right\|_{2}^{2}+\frac{a_{k}^{2} M^{2}}{2} . \quad \text { because }-\frac{p^{2}}{2}+p q \leq \frac{q^{2}}{2} . \tag{1}
\end{align*}
$$

On the other hand, we also have

$$
A_{0} G_{0}=a_{0}\left\langle g_{x_{0}}, x_{0}-x^{*}\right\rangle \leq \frac{a_{0}^{2} M^{2}}{2}+\frac{1}{2}\left\|x_{0}-x^{*}\right\|_{2}^{2}-\frac{1}{2}\left\|x_{1}-x^{*}\right\|_{2}^{2} .
$$

Summing over k and telescoping, we get

$$
A_{K} G_{K} \leq \frac{1}{2}\left\|x_{0}-x^{*}\right\|_{2}^{2}+\sum_{k=0}^{K} \frac{a_{K}^{2} M^{2}}{2}
$$

hence

$$
\begin{equation*}
f\left(x_{K}^{\text {out }}\right)-f\left(x^{*}\right) \leq G_{K} \leq \frac{\left\|x_{0}-x^{*}\right\|_{2}^{2}}{2 A_{K}}+\frac{M^{2} \sum_{k=0}^{K} a_{k}^{2}}{2 A_{K}} . \tag{2}
\end{equation*}
$$

It remains to choose the stepsize sequence $\left\{a_{k}\right\}$ to get a good convergence bound. Consider using a constant stepsize $a_{k}=C, \forall k$, then $A_{K}=C(K+1)$. Then

$$
f\left(x_{K}^{\text {out }}\right)-f\left(x^{*}\right) \leq \frac{\left\|x_{0}-x^{*}\right\|_{2}^{2}}{2 C(K+1)}+\frac{M^{2} C}{2} .
$$

The RHS is minimized when the two RHS terms are balanced:

$$
\frac{\left\|x_{0}-x^{*}\right\|_{2}^{2}}{C(K+1)}=\frac{M^{2} C}{2} \quad \Longleftrightarrow \quad C=\frac{\left\|x_{0}-x^{*}\right\|_{2}}{M \sqrt{K+1}}
$$

We conclude that with the choice $a_{k}=\frac{\left\|x_{0}-x^{*}\right\|_{2}}{M \sqrt{K+1}}, \forall k$, it holds that

$$
f\left(x_{K}^{\text {out }}\right)-f\left(x^{*}\right) \leq \frac{M\left\|x_{0}-x^{*}\right\|_{2}}{\sqrt{K+1}} .
$$

This is slower than the $\frac{1}{K}$ rate for minimizing a smooth convex function.

3.2 Other considerations

The above choice of $\left\{a_{k}\right\}$ and the final bound require:
(i) knowing $\left\|x_{0}-x^{*}\right\|_{2}$;
(ii) fixing the total number of iterations K before setting $\left\{a_{k}\right\}$.

To address issue (i), note that we usually know (an upper bound of) the diameter of \mathcal{X}, i.e., $D:=$ $\max _{x, y \in \mathcal{X}}\|x-y\|_{2}$. If D is finite, then $\left\|x_{0}-x^{*}\right\| \leq D$. In this case we can choose $a_{k}=\frac{D}{M \sqrt{K+1}}, \forall k$. Plugging into (2), we get

$$
f\left(x_{K}^{\text {out }}\right)-f\left(x^{*}\right) \leq \frac{D^{2}+M^{2} \sum_{k=0}^{K} a_{k}^{2}}{2 A_{K}} \leq \frac{D M}{\sqrt{K+1}} .
$$

To address issue (ii), we could instead choose $a_{k}=\frac{D}{M \sqrt{k+1}}$, which gives a so-called "anytime algorithm" with the slightly worse bound

$$
f\left(x_{K}^{\text {out }}\right)-f\left(x^{*}\right)=O\left(\frac{D M \log K}{\sqrt{K+1}}\right) .
$$

Finally, if D is unknown or unbounded, then we can use $a_{k}=\frac{1}{\sqrt{k+1}}$. Note that this choice does not require knowledge of the Lipschitz M either. In this case we have

$$
f\left(x_{K}^{\text {out }}\right)-f\left(x^{*}\right)=O\left(\frac{\left(\left\|x_{0}-x^{*}\right\|_{2}^{2}+M^{2}\right) \log K}{\sqrt{K+1}}\right) .
$$

4 Lower bounds (optional)

The $O\left(\frac{1}{\sqrt{K}}\right)$ rate above is order-wise optimal for first-order methods in a sense similar to the optimality of AGD. Consider a first-order method that generates iterates $x_{1}, x_{2}, x_{3} \ldots$ satisfying $x_{1}=$ 0 and

$$
x_{k+1} \in \operatorname{Lin}\left\{g_{1}, \ldots g_{k}\right\}, \quad \forall k \geq 1,
$$

where $g_{k} \in \partial f\left(x_{k}\right)$ is an arbitrary subgradient at x_{k}. Note that the iterates x_{k} and $x_{k}^{\text {out }}$ of PSubGD both satisfy this assumption. We have the following lower bound.

Theorem 3. There exists a convex and M-Lipschitz function f such that for any first-order method satisfying the above assumption, we have

$$
\min _{1 \leq k \leq K} f\left(x_{k}\right)-f\left(x^{*}\right) \geq \frac{M\left\|x^{*}-x_{1}\right\|_{2}}{2(1+\sqrt{K})} .
$$

Proof. Consider a function $f: \mathbb{R}^{K} \rightarrow \mathbb{R}$ defined as

$$
f(x)=\gamma \max _{1 \leq i \leq K} x(i)+\frac{1}{2}\|x\|_{2}^{2}
$$

where $\gamma=\frac{M \sqrt{K}}{1+\sqrt{K}}$. Then

$$
\partial f(x)=x+\gamma \operatorname{conv}\left\{e_{i}: i \in \underset{1 \leq j \leq K}{\operatorname{argmax}} x(j)\right\},
$$

where $e_{i} \in \mathbb{R}^{K}$ is the i th standard basis vector and $\operatorname{conv}\{\cdot\}$ denotes the convex hull.
A minimizer of f is x^{*} with $x^{*}(i)=-\frac{\gamma}{K}, \forall i$, because $0 \in \partial f\left(x^{*}\right)$ (Theorem 1). Hence

$$
\begin{equation*}
\left\|x^{*}-x_{1}\right\|_{2}=\left\|x^{*}\right\|_{2}=\frac{\gamma}{\sqrt{K}}=\frac{M}{1+\sqrt{K}} \tag{3}
\end{equation*}
$$

and the optimal value is

$$
f\left(x^{*}\right)=-\frac{\gamma^{2}}{K}+\frac{1}{2} \frac{\gamma^{2}}{K}=-\frac{M^{2}}{2(1+\sqrt{K})^{2}} .
$$

Note that if $\|x\|_{2} \leq \frac{\gamma}{\sqrt{K}}$, then $\|g\|_{2} \leq \frac{\gamma}{\sqrt{K}}+\gamma=M, \forall g \in \partial f(x)$. By Theorem 2 we know that f is M-Lipschitz on the ball $\left\{x:\|x\|_{2} \leq \frac{\gamma}{\sqrt{K}}\right\}$.

Under our assumption for first-order methods, it is easy to see that

$$
x_{k} \in \operatorname{Lin}\left\{g_{1}, \ldots g_{k-1}\right\} \subseteq \operatorname{Lin}\left\{e_{1}, \ldots, e_{k-1}\right\}
$$

Therefore, for all $k \leq K$, we have $x_{k}(K)=0$ and thus $f\left(x_{k}\right) \geq 0$. It follows that the optimality gap is lower bounded as

$$
f\left(x_{k}\right)-f\left(x^{*}\right) \geq 0-\frac{M^{2}}{2(1+\sqrt{K})^{2}}=\frac{M\left\|x^{*}-x_{1}\right\|_{2}}{2(1+\sqrt{K})}
$$

where the last step follows from (3).

[^0]: ${ }^{1}$ In this lecture, $x(i)$ denotes the i-th coordinate of the vector x

