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Lecture 17: Nonsmooth Optimization

Yudong Chen

All methods we have seen so far work under the assumption that the objective function f is
smooth and in particular differentiable. In this lecture, we consider nonsmooth functions.

Examples include the absolute value f(x) = |x| and more generally the ¢; norm f(x) = ||x||; =
Y4 |x(i)| = X4, max {x(i), —x(i)},' as well as the so-called Rectified Linear Unit (ReLU) f(x) =
max {x,0}. In general, the maximum of (finitely many) smooth functions is a nonsmooth function.

1 Nonsmooth optimization

Consider the problem
min f(x). (P)

xeX

Assumptions:

e fis M-Lipschitz continuous for some M € (0, ), i.e.,

f(x) = fWI < Mx—yll, Vx,y € dom(f),

under some norm ||-||, whose dual norm is ||-||,. Here, ||-|| can be an arbitrary norm. Later
when we discuss the projected subgradient descent method, we will restrict to the ¢, norm.

* fis convex and minimized by some x* € argmin__, f(x).

e X C R is closed, convex and non-empty, and we can efficiently compute projection onto
X.

In this setting, f is not necessarily differentiable. But, it is subdifferentiable.

2 Subdifferentiability

Definition 1. We say that a convex function f : R? — R is subdifferentiable at x € dom(f) if there
exists g € RY such that

VyeR:  fly) > f(x) + (8uy —x).

Such a vector g is called a subgradient of f at x. The set of all subgradients of f at x is called the
subdifferential of f at x and denoted by of(x).

Hn this lecture, x(i) denotes the i-th coordinate of the vector x
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Example 1. Let f(x) = |x| be the absolute value function. Then

oo = [%|
{1} x>0
of(x) =¢{-1} x<0 . g
[-1,1] x=0
:::5(\/ x

vy fop = Feo+ <9, 9-x

Exercise 1. What is of(x) for the function f(x) = max{x,0}?

It is easy to see that if f is in fact convex and differentiable, then df (x) = {V f(x)} is a single-
ton.
2.1 Optimality condition

For a differentiable convex function f, we know from previous lectures that x* is a minimizer if
and only if Vf(x*) = 0. The following theorem provides a generalization to potentially non-
differentiable functions.

Theorem 1. For a convex function f, a point x* is a minimizer if and only if 0 € of (x*).
Proof. Observe that
0€af(x")

= fy) = f(x") + 0y —x7),Vy by Definition 1
+=x* is a minimizer

2.2 Properties of subdifferential (optional)

The subdifferential has many important properties. We discuss a few of them below; see Wright-
Recht Sections 8.2-8.4 for more.

Fact 1. Every convex lower semicontinuous function is subdifferentiable everywhere on the interior its
domain.

0, xe&, L .
¢ X be the indicator function of a closed convex nonempty set
oo/ x 4

X. Then for each x € X, dly(x) = Ny(x), where Ny (x) is the normal cone at x.

Example 2. Let [y(x) =

For smooth functions, the gradient has a linearity property: V(af + bh)(x) = aVf(x) +
bVh(x). A similar property holds for the subdifferential.

Fact 2 (Linearity). For any two convex functions f,h and any positive constants a, b, we have
o(af +bh)(x) = adf(x) +bo(x) = {ag+bg' : g € of (x),§' € oh(x)}

for x in the interior of dom(f) N dom(g).
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Exercise 2. What is 9f (x) for the ¢; norm f(x) = || x|, := Y9, |xi|?

With the above facts, we can unify the first-order optimality conditions for constrained and
unconstrained problems:

— Vf(x) € Ny(x

~— —

< —Vf(x) €dly(x by Exercise 2
<=0 Vf(x)+dly(x)
<=0€d(f+Ix(x)). by Fact 2

2.3 Lipschitz continuity
The theorem below relates the subgradients and Lipschitz continuity.

Theorem 2. Let f : R — R be a convex function. f is M-Lipschitz-continuous w.r.t a norm ||-|| if and

only if
(Vx € dom(f)) (Vgs € f(x)) : [igsll, < M.

Proof. = direction. Suppose f is M-Lipschitz. Fix any x and g, € 9f(x). By definition of
subgradient and the LIpschitz property, we have

(§x,u) < fx+u) = f(x) < Mlul|, Vu,
hence
llgxll, = uﬁﬁfﬁi : (gx,u) definition of dual norm
< u:IHI:t&ﬁ):(lM l|u|| = M.

<= direction. Assume that (Vx € dom(f)) (Vgx € 9f(x)) : ||gx||, < M. Then for all y:

fy) = f(x) +(gxy — x)
= f(x) = f(y) < (gvx—y) < gl lIx—yll <Mlx—yl.

Switching the roles of x and y gives
f) = f(0) < (gwy =) < [lgyll. ly =2l < Mlly — x|
Combining gives |f(x) — f(y)| < M ||x —y]|. O

3 Projected subgradient descent

For the rest of the lecture, we assume f is M-Lipschitz w.r.t. the Euclidean ¢, norm ||-|,.
We consider the following projected subgradient descent (PSubGD) method:

. 1 2
X1 = argmin {ay (g4, — ) + 5 1y — %3
yeX

= Py (X — m8x,)

where one may take any subgradient g, from the set df(xy), and a; > 0 is the stepsize.

3
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Without smoothness, we cannot get a descent lemma. In particular, it is not necessarily true
that f(xx11) < f(xx). Nevertheless, we can still argue about convergence for the (weighted)
average of the iterates, defined as

out . Za X;,

where Ay := 22‘20 a;.

3.1 Convergence rate

We follow the proof strategy introduced in the Frank-Wolfe lecture and restated below.
General strategy:

1. Maintain an upper bound Uy > f(x") and a lower bound L; < f(x*).

2. With Gy := Ui — Lx > f(x") — f(x*), show that

AoGo+ Y5 E;

ArGp — Af-1Gr1 S B = G < 1
k

3. Choose {ax} so that the above right hand decays to 0 fast.

By subdifferentiability and convexity, we have the lower bound

Le= 4 Y ai (f(xi) + (g, X" — xi)) < f(x7).

and the upper bound

k
Z zf xl >f< Zﬂx1>= out)

Hence f(x") — f(x*) < Uy — Ly =: Gy. It follows that

ArGr — A—1Gro1 = —ax (Qur X° — Xg)
= g (Qup, Xk+1 — X°) + g (Qxs Xk — Xk1) -

Recall x1 = argmin, . {ak (gvoy) + 3 lly— xk||§} = Py (xx — axgx, ). By 1lst-order optimal-
ity condition of x4 (equivalently, the minimum principle for projection):

(Xkt1 — Xk + kG U — Xkp1) > 0, Vu € X.
In particular, for u = x*:
A (G X1 — X)) < (X1 — X, X — Xpep1)

1 2 1 > 1 2
) [k — x*l5 — 2 | xk1 — X" |5 — > k1 — xx[3 -
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It follows that
1 *1|2 1 %112
AkGr = Ap-1Gr1 <5 [l = 273 = 5 [l =27l
1 2
— 2 e = 5 {2~ k)
1 2 1 2
<3 [k — x7[|3 — 5 [xk11 — x"I3
1
- = kaﬂ — kag + axM || xg — xp11]],  Cauchy-Schwarz, ||gy,|l, < M

1 i i 2M2 2 2
fmrmeLWHH—xm+k2. mee—%ﬁmqg%. (1)

On the other hand, we also have

212

B agM
AoGo = ag (gxy, X0 — x*) < 02

1
3 Mo =B = 5 e — x|
Summing over k and telescoping, we get

i aM2
AKGK<—||x0—x ||2—|—Z K

hence ) Sk
— 2 M2YK g
outy AP < on X HZ k=0 "k ) 2

It remains to choose the stepsize sequence {a;} to get a good convergence bound. Consider
using a constant stepsize ay = C, Vk, then Ax = C(K + 1). Then

*|2 2
outy *) < on - X HZ MC

The RHS is minimized when the two RHS terms are balanced:

Ilx0 — x*Hg _ M?2C — C— [0 — X*Hz'
C(K+1) 2 MyEK+1

llxo—x"1l,

We conclude that with the choice a; = TR Vk, it holds that

out * MHXO —X*H
flxR™) = fx )Sﬁ

This is slower than the % rate for minimizing a smooth convex function.

3.2 Other considerations

The above choice of {a;} and the final bound require:
(i) knowing |lxo — x*||,;

(i) fixing the total number of iterations K before setting {ay }.

5
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To address issue (i) , note that we usually know (an upper bound of) the diameter of X, i.e., D :=
maxy yecx [|x — yl|, . If D is finite, then |[xg — x*[| < D. In this case we can choose a; = M\/LK?’WC'
Plugging into (2), we get

D? + M?2YK a2 DM
xOUtY _ £(y*) < k=0 "k < )

. . . o D
To address issue (ii), we could instead choose a;, = Y

which gives a so-called “anytime
algorithm” with the slightly worse bound

Fag - fx) = 0 (2785

Finally, if D is unknown or unbounded, then we can use a;, = ﬁ Note that this choice does

not require knowledge of the Lipschitz M either. In this case we have

%o — x* 3 + M?) log K
VK+1 '

) — f(x') =0 ((

4 Lower bounds (optional)

The O (ﬁ) rate above is order-wise optimal for first-order methods in a sense similar to the

optimality of AGD. Consider a first-order method that generates iterates x1, x2, x3... satisfying x; =
0 and
Xk41 ELin{gl,...gk}, Vk > 1,

where g € 9f(xx) is an arbitrary subgradient at x;. Note that the iterates x; and x"* of PSubGD
both satisfy this assumption. We have the following lower bound.

Theorem 3. There exists a convex and M-Lipschitz function f such that for any first-order method satisfy-
ing the above assumption, we have
. M [x" = 2l
min f(xg) — f(x*) > ——=-=.
1SkSKf( K= ) 2 2(1+ VK)

Proof. Consider a function f : RK — R defined as

£x) = 7 max x(i) + 5 [1xI2,

1<i<K

where v = ﬁ‘\/ﬁ% Then

afw)=x~+7amv{a:i€a%anWﬁ}/

1<j<K

where ¢; € RX is the ith standard basis vector and conv{-} denotes the convex hull.

A minimizer of f is x* with x*(i) = —%, Vi, because 0 € of (x*) (Theorem 1). Hence
. N 0% M
X —X = ||x = — = 3
I > = 1%l /K 1+VK ©)
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and the optimal value is
K 2K~ 21+ VK
Note that if || x|, < \%K, then ||g||, < % + v = M, Vg € of (x). By Theorem 2 we know that f is
M-Lipschitz on the ball {x Hx]l, < ﬁ} .
Under our assumption for first-order methods, it is easy to see that

xe € Lin{g1,...gk-1} C Lin{ey,...,ex_1}.

Therefore, for all k < K, we have x(K) = 0 and thus f(x;) > 0. It follows that the optimality gap
is lower bounded as

M M —x,
2(1+vK)?2  21+VK) ’

where the last step follows from (3). O

fla) = f(x") 20
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