Lecture 1–2: Optimization Background

Yudong Chen

1 Introduction

Our standard optimization problem

$$\min_{x \in \mathcal{X}} f(x) \tag{P}$$

- *x*: a vector, optimization/decision variable
- \mathcal{X} : feasible set
- f(x) objective function, real-valued
- $\max_{x} f(x) \iff \min_{x} -f(x)$

The (optimal) value of (P):

$$val(P) = \inf_{x \in \mathcal{X}} f(x).$$

To fully specify (P), we need to specify

- vector space, feasible set, objective function;
- what it means to solve (P).

1.1 Can we even hope to solve an arbitrary optimization problem?

Example 1. Suppose we want to find positive integers *x*, *y*, *z* satisfying

$$x^3 + y^3 = z^3.$$

Can be formulated as a (continuous) optimization problem (P_F):

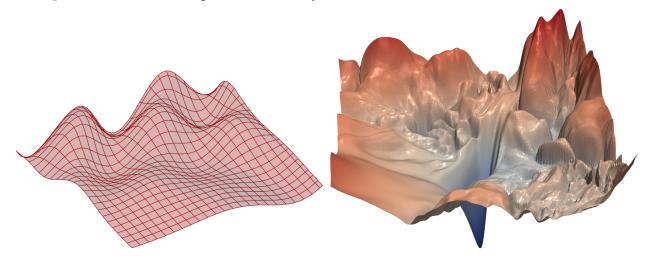
$$\min_{x,y,z,n} (x^n + y^n - z^n)^2
s.t.x \ge 1, y \ge 1, z \ge 1, n \ge 3
\sin^2(\pi n) + \sin^2(\pi x) + \sin^2(\pi y) + \sin^2(\pi z) = 0.$$
(P_F)

If we could certify whether $val(P_F) \neq 0$, we would have found a proof for Fermat's Last theorem (1637):

For any $n \ge 3$, $x^n + y^n = z^n$ has no solutions over positive integers.

Proved by Andrew Wiles in 1994.

Example 2. Unconstrained optimization, many local minima: ¹



We cannot hope for solving an arbitrary optimization problem. We need some structure.

2 Specifying the optimization problem

2.1 Vector space

This is where the optimization variable and the feasible set live. $(\mathbb{R}^d, \|\cdot\|)$: normed vector space, "primal space".

• The variable x is a (column) vector in \mathbb{R}^d .

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}.$$

• The norm tells us how to measure distances in \mathbb{R}^d .

Most often, we will take $\|x\| = \|x\|_2 = \left(\sum_{i=1}^d x_i^2\right)^{1/2}$ (Euclidean norm)

We sometimes also consider ℓ_p norm $\|x\|_p = \left(\sum_{i=1}^d |x_i|^p\right)^{1/p}$, $p \geq 1$

- $\bullet \|x\|_1 = \sum_i |x_i|,$
- $\bullet \|x\|_{\infty} = \max_{1 \le i \le d} |x_i|.$

(Plots of unit balls of ℓ_2 , ℓ_1 , ℓ_∞ norms.)

¹Left: plot by Jelena Diakonikolas. Right: loss surfaces of ResNet-56 without skip connections (https://arxiv.org/pdf/1712.09913.pdf).

We will use $\langle \cdot, \cdot \rangle$ to denote inner products. Standard inner product

$$\langle x, y \rangle = x^{\top} y = \sum_{i=1}^{d} x_i y_i.$$

When we work with $(\mathbb{R}^d, \|\cdot\|_p)$, view $\langle y, x \rangle$ as the value of a linear function y at x. So, if we are measuring the length of x using the $\|\cdot\|_p$, we should measure the length of y using $\|\cdot\|_q$, where $\frac{1}{p} + \frac{1}{q} = 1$.

Definition 1 (Dual norm). The dual norm of $\|\cdot\|$ is given by

$$||z||_* := \sup_{||x|| \le 1} \langle z, x \rangle.$$

From the definition we immediately have the

Proposition 1 (Holder Inequality). For all $z, y \in \mathbb{R}^d$:

$$|\langle z, x \rangle| \leq ||z||_* \cdot ||x||.$$

Proof. Fix any two vectors x, z. Assume $x \neq 0, z \neq 0$, o.w. trivial. Define $\hat{x} = \frac{x}{\|x\|}$. Then

$$||z||_* \ge \langle z, \hat{x} \rangle = \frac{\langle z, x \rangle}{||x||}$$

and hence $\langle z, x \rangle \leq \|z\|_* \cdot \|x\|$. Applying same argument with x replaced by -x proves $-\langle z, x \rangle \leq \|z\|_* \cdot \|x\|$.

Example 3. $\|\cdot\|_p$ and $\|\cdot\|_q$ are duals when $\frac{1}{p} + \frac{1}{q} = 1$. In particular, $\|\cdot\|_2$ is its own dual; $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ are dual to each other.

In \mathbb{R}^d , all ℓ_p norms are equivalent. In particular,

$$\forall x \in \mathbb{R}^d, p \ge 1, r > p: \quad \|x\|_r \le \|x\|_p \le d^{\frac{1}{p} - \frac{1}{r}} \|x\|_r.$$

However, choice of norm affects how algorithm performance depends on dimension d.

2.2 Feasible set

The feasible set

$$\mathcal{X} \subseteq \mathbb{R}^d$$

specifies what solution points we are allowed to output.

If $\mathcal{X} = \mathbb{R}^d$, we say that (P) is *unconstrained*. Otherwise we say that (P) is *constrained*. \mathcal{X} can be specified:

- as an abstract geometric body (a ball, a box, a polyhedron, a convex set)
- via functional constraints:

$$g_i(x) \le 0, i = 1, 2, ..., m,$$

 $h_i(x) = 0, i = 1, ..., p$

Note that $f_i(x) \ge C$ is equivalent to taking $g_i(x) = C - f_i(x)$.

Example 4.

$$\mathcal{X} = \mathcal{B}_2(0,1) = \text{unit Euclidean ball}$$

 $\mathcal{X} = \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$

In this class, we will always assume that \mathcal{X} is *closed*.

Hein-Borel Theorem: $\mathcal{X} \subseteq \mathbb{R}^d$ is closed and bounded if and only if it is compact (if $\mathcal{X} \subset \bigcup_{\alpha \in A} U_\alpha$ for some family of open sets $\{U_\alpha\}$, then there exists a finite subfamily $\{U_{\alpha_i}\}_{i=1}^n$ such that $\mathcal{X} \subseteq \bigcup_{1 \le i \le n} U_{\alpha_i}$.)

Weierstrass Extreme Value Theorem: If \mathcal{X} is compact and f is a function that is defined and continuous on \mathcal{X} , then f attains its extreme values on \mathcal{X} .

What if \mathcal{X} is not bounded? Consider $f(x) = e^x$. Then $\inf_{x \in \mathbb{R}} f(x) = 0$, but not attained.

When we work with unconstrained problems, we will normally assume that f is bounded below.

Convex sets: Except for some special cases, we often assume that the feasible set is convex, so that we will be able to guarantee tractability.

Definition 2 (Convex set). A set $\mathcal{X} \subseteq \mathbb{R}^d$ is *convex* if

$$\forall x, y \in \mathcal{X}, \forall \alpha \in (0,1) : (1-\alpha)x + \alpha y \in \mathcal{X}$$

A picture.

We cannot hope to deal with arbitrary nonconvex constraints. E.g., $x_i(1-x_i)=0 \iff x_i \in \{0,1\}$, integer programs.

2.3 Objective function

"cost", "loss"

Extended real valued functions:

$$f: \mathcal{D} \to \mathbb{R} \cup \{-\infty, \infty\} \equiv \bar{\mathbb{R}}.$$

Here f is defined on $\mathcal{D} \subseteq \mathbb{R}^d$. Can extend the definition of f to all of \mathbb{R}^d by assigning the value $+\infty$ at each point $x \in \mathbb{R}^d \setminus \mathcal{D}$.

Effective domain:

$$dom(f) = \left\{ x \in \mathbb{R}^d : f(x) < \infty \right\}$$

In the sequel, domain means effective domain.

"Linear and nonlinear optimization" \approx "continuous optimization" (as contrast to discrete/combinatorial optimization)

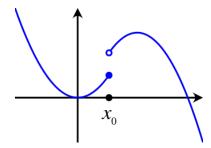
2.3.1 Lower semicontinuous functions

We mostly assume f to be continuous, which can be relaxed slightly.

Definition 3. A function $f: \mathbb{R}^d \to \overline{\mathbb{R}}$ is said to be *lower semicontinuous* (l.s.c) at $x \in \mathbb{R}^d$ if

$$f(x) \le \liminf_{y \to x} f(y).$$

We way f is l.s.c. on \mathbb{R}^d if it is l.s.c. at every point $x \in \mathbb{R}^d$.



This definition is mainly useful for allowing indicator functions.

Example 5. Verify yourself: Indicator of a closed set is l.s.c.

$$I_{\mathcal{X}}(x) = \begin{cases} 0, & x \in \mathcal{X} \\ \infty, & x \notin \mathcal{X}. \end{cases}$$

Using $I_{\mathcal{X}}$ we can write

$$\min_{x \in \mathcal{X}} f(x) \equiv \min_{x \in \mathbb{R}^d} \left\{ f(x) + I_{\mathcal{X}}(x) \right\},\,$$

thereby unifying constrained and unconstrained optimization.

2.3.2 Continuous and smooth functions

Unless we are abstracting away constraints, the least we will assume about f is that it is continuous.

Sometimes we consider stronger assumptions.

Definition 4. $f: \mathbb{R}^d \to \overline{\mathbb{R}}$ is said to be

1. Lipschitz-continuous on $\mathcal{X} \subseteq \mathbb{R}^d$ (w.r.t. the norm $\|\cdot\|$) if there exists $M < \infty$ such that

$$\forall x, y \in \mathcal{X} : |f(x) - f(y)| \le M \|x - y\|.$$

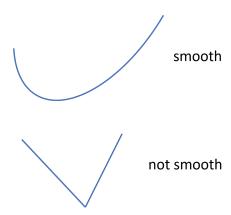
2. Smooth on $\mathcal{X} \subseteq \mathbb{R}^d$ (w.r.t. the norm $\|\cdot\|$) if f's gradient are Lipschitz-continuous, i.e., there exists $L < \infty$ such that

$$\forall x, y \in \mathcal{X} : \|\nabla f(x) - \nabla f(y)\|_* \le L \|x - y\|.$$

(Gradient:
$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_d} \end{bmatrix}$$
.)

 $^{^{2}}$ This definition can be viewed a quantitative version of C^{1} -smoothness.

• Picture:



In \mathbb{R}^d , Lipschitz-continuity in some norm implies the same for every other norm, but M may differ.

Example 6. $f(x) = \frac{1}{2} \|x\|_2^2$ is 1-smooth on \mathbb{R}^2 w.r.t. $\|\cdot\|_2$. The log-sum-exp (or softmax) function $f(x) = \log \left(\sum_{i=1}^d \exp(x_i)\right)$ is 1-smooth on \mathbb{R}^d w.r.t. $\|\cdot\|_{\infty}$.

Example 7. Function that is continuously differentiable on its domain but not smooth:

$$f(x) = \frac{1}{x}$$
$$dom(f) = \mathbb{R}_{++}$$

2.3.3 Convex functions

Definition 5. $f: \mathbb{R}^d \to \overline{\mathbb{R}}$ is convex if $\forall x, y \in \mathbb{R}^d$, $\forall \alpha \in (0,1)$:

$$f\left((1-\alpha)x + \alpha y\right) \le (1-\alpha)f(x) + \alpha f(y).$$

A picture.

Lemma 1. $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only its epigraph

$$epi(f) := \left\{ (x, a) : x \in \mathbb{R}^d, a \in \mathbb{R}, f(x) \le a \right\}$$

is convex.

Proof. Follows from definitions. Left as exercise.

Definition 6. We say that a function $f : \mathbb{R}^d \to \overline{\mathbb{R}}$ is proper if $\exists x \in \mathbb{R}^d$ s.t. $f(x) \in \mathbb{R}$.

Lemma 2. If $f : \mathbb{R}^d \to \overline{\mathbb{R}}$ is proper and convex, then dom(f) is convex.