Lecture 1-2: Optimization Background

Yudong Chen

1 Introduction

Our standard optimization problem

$$
\begin{equation*}
\min _{x \in \mathcal{X}} f(x) \tag{P}
\end{equation*}
$$

- x : a vector, optimization/decision variable
- \mathcal{X} : feasible set
- $f(x)$ objective function, real-valued
- $\max _{x} f(x) \Longleftrightarrow \min _{x}-f(x)$

The (optimal) value of (P):

$$
\operatorname{val}(\mathrm{P})=\inf _{x \in \mathcal{X}} f(x)
$$

To fully specify (P), we need to specify

- vector space, feasible set, objective function;
- what it means to solve (P).

1.1 Can we even hope to solve an arbitrary optimization problem?

Example 1. Suppose we want to find positive integers x, y, z satisfying

$$
x^{3}+y^{3}=z^{3} .
$$

Can be formulated as a (continuous) optimization problem (P_{F}):

$$
\begin{align*}
& \min _{x, y, z, n}\left(x^{n}+y^{n}-z^{n}\right)^{2} \\
& \text { s.t. } x \geq 1, y \geq 1, z \geq 1, n \geq 3 \tag{F}\\
& \quad \sin ^{2}(\pi n)+\sin ^{2}(\pi x)+\sin ^{2}(\pi y)+\sin ^{2}(\pi z)=0
\end{align*}
$$

If we could certify whether $\operatorname{val}\left(\mathrm{P}_{\mathrm{F}}\right) \neq 0$, we would have found a proof for Fermat's Last theorem (1637):

For any $n \geq 3, x^{n}+y^{n}=z^{n}$ has no solutions over positive integers.
Proved by Andrew Wiles in 1994.

Example 2. Unconstrained optimization, many local minima: ${ }^{1}$

We cannot hope for solving an arbitrary optimization problem.
We need some structure.

2 Specifying the optimization problem

2.1 Vector space

This is where the optimization variable and the feasible set live.
$\left(\mathbb{R}^{d},\|\cdot\|\right)$: normed vector space, "primal space".

- The variable x is a (column) vector in \mathbb{R}^{d}.

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right] .
$$

- The norm tells us how to measure distances in \mathbb{R}^{d}.

Most often, we will take $\|x\|=\|x\|_{2}=\left(\sum_{i=1}^{d} x_{i}^{2}\right)^{1 / 2}$ (Euclidean norm)
We sometimes also consider ℓ_{p} norm $\|x\|_{p}=\left(\sum_{i=1}^{d}\left|x_{i}\right|^{p}\right)^{1 / p}, p \geq 1$

- $\|x\|_{1}=\sum_{i}\left|x_{i}\right|$,
- $\|x\|_{\infty}=\max _{1 \leq i \leq d}\left|x_{i}\right|$.
(Plots of unit balls of $\ell_{2}, \ell_{1}, \ell_{\infty}$ norms.)

[^0]We will use $\langle\cdot, \cdot\rangle$ to denote inner products. Standard inner product

$$
\langle x, y\rangle=x^{\top} y=\sum_{i=1}^{d} x_{i} y_{i}
$$

When we work with $\left(\mathbb{R}^{d},\|\cdot\|_{p}\right)$, view $\langle y, x\rangle$ as the value of a linear function y at x. So, if we are measuring the length of x using the $\|\cdot\|_{p}$, we should measure the length of y using $\|\cdot\|_{q}$, where $\frac{1}{p}+\frac{1}{q}=1$.
Definition 1 (Dual norm). The dual norm of $\|\cdot\|$ is given by

$$
\|z\|_{*}:=\sup _{\|x\| \leq 1}\langle z, x\rangle .
$$

From the definition we immediately have the
Proposition 1 (Holder Inequality). For all $z, y \in \mathbb{R}^{d}$:

$$
|\langle z, x\rangle| \leq\|z\|_{*} \cdot\|x\| .
$$

Proof. Fix any two vectors x, z. Assume $x \neq 0, z \neq 0$, o.w. trivial. Define $\hat{x}=\frac{x}{\|x\|}$. Then

$$
\|z\|_{*} \geq\langle z, \hat{x}\rangle=\frac{\langle z, x\rangle}{\|x\|}
$$

and hence $\langle z, x\rangle \leq\|z\|_{*} \cdot\|x\|$. Applying same argument with x replaced by $-x$ proves $-\langle z, x\rangle \leq$ $\|z\|_{*} \cdot\|x\|$.
Example 3. $\|\cdot\|_{p}$ and $\|\cdot\|_{q}$ are duals when $\frac{1}{p}+\frac{1}{q}=1$. In particular, $\|\cdot\|_{2}$ is its own dual; $\|\cdot\|_{1}$ and $\|\cdot\|_{\infty}$ are dual to each other.

In \mathbb{R}^{d}, all ℓ_{p} norms are equivalent. In particular,

$$
\forall x \in \mathbb{R}^{d}, p \geq 1, r>p: \quad\|x\|_{r} \leq\|x\|_{p} \leq d^{\frac{1}{p}-\frac{1}{r}}\|x\|_{r}
$$

However, choice of norm affects how algorithm performance depends on dimension d.

2.2 Feasible set

The feasible set

$$
\mathcal{X} \subseteq \mathbb{R}^{d}
$$

specifies what solution points we are allowed to output.
If $\mathcal{X}=\mathbb{R}^{d}$, we say that (P) is unconstrained. Otherwise we say that (P) is constrained. \mathcal{X} can be specified:

- as an abstract geometric body (a ball, a box, a polyhedron, a convex set)
- via functional constraints:

$$
\begin{aligned}
& g_{i}(x) \leq 0, i=1,2, \ldots, m \\
& h_{i}(x)=0, i=1, \ldots, p
\end{aligned}
$$

Note that $f_{i}(x) \geq C$ is equivalent to taking $g_{i}(x)=C-f_{i}(x)$.

Example 4.

$$
\begin{aligned}
\mathcal{X} & =\mathcal{B}_{2}(0,1)=\text { unit Euclidean ball } \\
\mathcal{X} & =\left\{x \in \mathbb{R}^{d}:\|x\|_{2} \leq 1\right\}
\end{aligned}
$$

In this class, we will always assume that \mathcal{X} is closed.
Hein-Borel Theorem: $\mathcal{X} \subseteq \mathbb{R}^{d}$ is closed and bounded if and only if it is compact (if $\mathcal{X} \subset \bigcup_{\alpha \in A} U_{\alpha}$ for some family of open sets $\left\{U_{\alpha}\right\}$, then there there exists a finite subfamily $\left\{U_{\alpha_{i}}\right\}_{i=1}^{n}$ such that $\left.\mathcal{X} \subseteq \cup_{1 \leq i \leq n} U_{\alpha_{i}}.\right)$

Weierstrass Extreme Value Theorem: If \mathcal{X} is compact and f is a function that is defined and continuous on \mathcal{X}, then f attains its extreme values on \mathcal{X}.

What if \mathcal{X} is not bounded? Consider $f(x)=e^{x}$. Then $\inf _{x \in \mathbb{R}} f(x)=0$, but not attained.
When we work with unconstrained problems, we will normally assume that f is bounded below.

Convex sets: Except for some special cases, we often assume that the feasible set is convex, so that we will be able to guarantee tractability.

Definition 2 (Convex set). A set $\mathcal{X} \subseteq \mathbb{R}^{d}$ is convex if

$$
\forall x, y \in \mathcal{X}, \forall \alpha \in(0,1):(1-\alpha) x+\alpha y \in \mathcal{X}
$$

A picture.
We cannot hope to deal with arbitrary nonconvex constraints. E.g., $x_{i}\left(1-x_{i}\right)=0 \Longleftrightarrow x_{i} \in$ $\{0,1\}$, integer programs.

2.3 Objective function

"cost", "loss"
Extended real valued functions:

$$
f: \mathcal{D} \rightarrow \mathbb{R} \cup\{-\infty, \infty\} \equiv \overline{\mathbb{R}}
$$

Here f is defined on $\mathcal{D} \subseteq \mathbb{R}^{d}$. Can extend the definition of f to all of \mathbb{R}^{d} by assigning the value $+\infty$ at each point $x \in \mathbb{R}^{d} \backslash \mathcal{D}$.

Effective domain:

$$
\operatorname{dom}(f)=\left\{x \in \mathbb{R}^{d}: f(x)<\infty\right\}
$$

In the sequel, domain means effective domain.
"Linear and nonlinear optimization" \approx "continuous optimization" (as contrast to discrete/combinatorial optimization)

2.3.1 Lower semicontinuous functions

We mostly assume f to be continuous, which can be relaxed slightly.
Definition 3. A function $f: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ is said to be lower semicontinuous (1.s.c) at $x \in \mathbb{R}^{d}$ if

$$
f(x) \leq \liminf _{y \rightarrow x} f(y)
$$

We way f is l.s.c. on \mathbb{R}^{d} if it is l.s.c. at every point $x \in \mathbb{R}^{d}$.

This definition is mainly useful for allowing indicator functions.
Example 5. Verify yourself: Indicator of a closed set is 1.s.c.

$$
I_{\mathcal{X}}(x)= \begin{cases}0, & x \in \mathcal{X} \\ \infty, & x \notin \mathcal{X}\end{cases}
$$

Using $I_{\mathcal{X}}$ we can write

$$
\min _{x \in \mathcal{X}} f(x) \equiv \min _{x \in \mathbb{R}^{d}}\left\{f(x)+I_{\mathcal{X}}(x)\right\},
$$

thereby unifying constrained and unconstrained optimization.

2.3.2 Continuous and smooth functions

Unless we are abstracting away constraints, the least we will assume about f is that it is continuous.

Sometimes we consider stronger assumptions.
Definition 4. $f: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ is said to be

1. Lipschitz-continuous on $\mathcal{X} \subseteq \mathbb{R}^{d}$ (w.r.t. the norm $\|\cdot\|$) if there exists $M<\infty$ such that

$$
\forall x, y \in \mathcal{X}:|f(x)-f(y)| \leq M\|x-y\|
$$

2. Smooth on $\mathcal{X} \subseteq \mathbb{R}^{d}$ (w.r.t. the norm $\|\cdot\|$) if f^{\prime} s gradient are Lipschitz-continuous, i.e., there exists $L<\infty$ such that ${ }^{2}$

$$
\forall x, y \in \mathcal{X}:\|\nabla f(x)-\nabla f(y)\|_{*} \leq L\|x-y\| .
$$

(Gradient: $\nabla f(x)=\left[\begin{array}{c}\frac{\partial f}{\partial x_{1}} \\ \vdots \\ \frac{\partial f}{\partial x_{d}}\end{array}\right]$. .)

[^1]- Picture:

In \mathbb{R}^{d}, Lipschitz-continuity in some norm implies the same for every other norm, but M may differ.
Example 6. $f(x)=\frac{1}{2}\|x\|_{2}^{2}$ is 1 -smooth on \mathbb{R}^{2} w.r.t. $\|\cdot\|_{2}$. The log-sum-exp (or softmax) function $f(x)=\log \left(\sum_{i=1}^{d} \exp \left(x_{i}\right)\right)$ is 1 -smooth on \mathbb{R}^{d} w.r.t. $\|\cdot\|_{\infty}$.

Example 7. Function that is continuously differentiable on its domain but not smooth:

$$
\begin{aligned}
f(x) & =\frac{1}{x} \\
\operatorname{dom}(f) & =\mathbb{R}_{++}
\end{aligned}
$$

2.3.3 Convex functions

Definition 5. $f: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ is convex if $\forall x, y \in \mathbb{R}^{d}, \forall \alpha \in(0,1)$:

$$
f((1-\alpha) x+\alpha y) \leq(1-\alpha) f(x)+\alpha f(y)
$$

A picture.
Lemma 1. $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if and only its epigraph

$$
e p i(f):=\left\{(x, a): x \in \mathbb{R}^{d}, a \in \mathbb{R}, f(x) \leq a\right\}
$$

is convex.
Proof. Follows from definitions. Left as exercise.

Definition 6. We say that a function $f: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ is proper if $\exists x \in \mathbb{R}^{d}$ s.t. $f(x) \in \mathbb{R}$.
Lemma 2. If $f: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ is proper and convex, then $\operatorname{dom}(f)$ is convex.

[^0]: ${ }^{1}$ Left: plot by Jelena Diakonikolas. Right: loss surfaces of ResNet-56 without skip connections (https://arxiv. org/pdf/1712.09913.pdf).

[^1]: ${ }^{2}$ This definition can be viewed a quantitative version of C^{1}-smoothness.

