Lecture 21: Quasi-Newton Methods

Yudong Chen

1 Generic quasi-Newton method

A generic quasi-Newton (QN) method takes the form

$$x_{k+1} = x_k - \alpha_k \underbrace{(B_k)^{-1} \nabla f(x_k)}_{-p_k}, \tag{QN}$$

where $B_k > 0$. We assume that the stepsize α_k is chosen by a linear procedure to satisfy the weak/strong Wolfe conditions (both sufficient decrease and curvature).¹ ²

We want a B_k that is easier to compute than the Hessian $\nabla^2 f(x_k)$ but has the same "effect" as $\nabla^2 f(x_k)$. In particular, B_k should be such that the search direction $p_k = -B_k^{-1} \nabla f(x_k)$ approximates the Newton direction $p_k^N = -\nabla^2 f(x_k)^{-1} \nabla f(x_k)$. The goal is to achieve superlinear convergence, i.e., faster than first-order methods.

1.1 General results

The theorem below is general and applies to any search direction p_k . We will later apply this theorem to the quasi-newton method (QN).

Theorem 1 (Theorem 3.6 in Nocedal-Wright). Suppose that $f : \mathbb{R}^d \to \mathbb{R}$ is twice continuously differentiable. Consider the iteration $x_{k+1} = x_k + \alpha_k p_k$, where p_k is a descent direction and α_k satisfies Weak Wolfe Conditions (WWC) with $c_1 \leq \frac{1}{2}$. If the sequence $\{x_k\}$ converges to a point x^* such that $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succ 0$, and if the search direction p_k satisfies

$$\lim_{k \to \infty} \frac{\left\| \nabla f(x_k) + \nabla^2 f(x_k) p_k \right\|}{\|p_k\|} = 0,\tag{1}$$

then

- 1. the unit stepsize $\alpha_k = 1$ is admissible (i.e., satisfies WWC) for all sufficient large k;
- 2. if $\alpha_k = 1$ for all $k > k_0$, where $k_0 < \infty$, then $\{x_k\}$ converges to x^k superlinearly.

Theorem 1 can be applied to the damped Newton's method, which uses $p_k = -\nabla^2 f(x_k)^{-1} \nabla f(x_k)$ and trivially satisfies (1). Therefore, the theorem guarantees that damped Newton's method with backtracking line search accepts the stepszie $\alpha_k = 1$ for k sufficiently large, in which case it reduces to basic Newton's method and converges quadratically.

¹For reasons to become clear later, it is important that the curvature condition (not just sufficient decrease) holds. Therefore, backtracking line search is less appropriate for Quasi-Newton methods.

²It is often assumed that the line search procedure will try $\alpha_k = 1$ first and accept this stepsize if it satisfies the Wolfe Conditions.

For a general QN search direction $p_k = -B_k^{-1} \nabla f(x_k)$, the condition (1) is equivalent to

$$\lim_{k \to \infty} \frac{\| (B_k - \nabla^2 f(x_k)) p_k \|_2}{\| p_k \|_2} = 0.$$
 (2)

The above equation can be written as $\|(B_k - \nabla^2 f(x_k)) p_k\| = o(\|p_k\|)$. Note that this condition may hold even if B_k does not converge to $\nabla^2 f(x^*)$. It suffices that B_k approximates $\nabla^2 f(x_k)$ well along the search directions p_k . This is a general guideline for choosing B_k .

In fact, the condition (2) is both necessary and sufficient for superlinear convergence of QN method, as shown in the following theorem.

Theorem 2 (Theorem 3.7 in Nocedal-Wright). Suppose $f: \mathbb{R}^d \to \mathbb{R}$ is twice continuously differentiable. Consider the iteration (QN) with $\alpha_k = 1$. Assume that $\{x_k\}$ converges to a point x^* such that $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succ 0$. Then the convergence is superlinear if and only if (2) holds.

To prove Theorem 2, we need the following claim.

Claim 1. Condition (2) is equivalent to

$$||p_k - p_k^{\mathrm{N}}||_2 = o(||p_k||_2),$$

where $p_k^{\rm N} := -\left(\nabla^2 f(x_k)\right)^{-1} \nabla f(x_k)$ is the Newton direction.

Proof of Claim 1. We first show (2) $\Longrightarrow \|p_k - p_k^N\| = o(\|p_k\|)$. Since $p_k = -B_k^{-1} \nabla f(x_k)$, we can write

$$p_k^{N} = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k) = (\nabla^2 f(x_k))^{-1} B_k p_k.$$

Hence

$$\begin{aligned} \left\| p_{k} - p_{k}^{N} \right\| &= \left\| p_{k} - \left(\nabla^{2} f(x_{k}) \right)^{-1} B_{k} p_{k} \right\| \\ &= \left\| \left(\nabla^{2} f(x_{k}) \right)^{-1} \left(\nabla^{2} f(x_{k}) - B_{k} \right) p_{k} \right\| \\ &\leq \left\| \left(\nabla^{2} f(x_{k}) \right)^{-1} \right\| \cdot \left\| \left(\nabla^{2} f(x_{k}) - B_{k} \right) p_{k} \right\| \\ &\leq 2 \left\| \left(\nabla^{2} f(x^{*}) \right)^{-1} \right\| \cdot o \left(\| p_{k} \| \right) \\ &\qquad \qquad \text{because } \left\| \left(\nabla^{2} f(x_{k}) \right)^{-1} \right\| \leq 2 \left\| \left(\nabla^{2} f(x^{*}) \right)^{-1} \right\| \text{ for all } k \text{ sufficient large, and by (2)} \\ &= o(\| p_{k} \|). \end{aligned}$$

We next show $||p_k - p_k^N|| = o(||p_k||) \implies$ (2). From what we have derived above:

$$p_k - p_k^{N} = \left(\nabla^2 f(x_k)\right)^{-1} \left(\nabla^2 f(x_k) - B_k\right) p_k,$$

hence

$$\left(\nabla^2 f(x_k) - B_k\right) p_k = \nabla^2 f(x_k) \left(p_k - p_k^{N}\right).$$

It follows that

$$\| \left(\nabla^2 f(x_k) - B_k \right) p_k \| = \| \nabla^2 f(x_k) \left(p_k - p_k^{\mathrm{N}} \right) \|$$

$$\leq \| \nabla^2 f(x_k) \| \left\| p_k - p_k^{\mathrm{N}} \right\|$$

$$= O(1) \cdot o(\|p_k\|),$$

where the last step holds since $\|\nabla^2 f(x_k)\| \le 2 \|\nabla^2 f(x^*)\| = O(1)$.

We are now ready to prove Theorem 2.

Proof of Theorem 2. We only prove the "if" part; "only if" part is left as exercise.

Assume $||p_k - p_k^N|| = o(||p_k||)$. Want to show superlinear convergence, i.e., $||x_{k+1} - x^*|| = o(||x_k - x^*||)$. We have

$$||x_{k+1} - x^*|| = ||x_k + p_k - x^*||$$

$$= ||x_k + p_k^N - x^* + p_k - p_k^N||$$

$$\leq ||x_k + p_k^N - x^*|| + ||p_k - p_k^N||$$

$$= O(||x_k - x^*||^2) + o(||p_k||)$$

$$= o(||x_k - x^*||) + o(||p_k||).$$

It remains to show $\|p_k\| = O\left(\|x_k - x^*\|\right)$. Note that $\left\|p_k - p_k^N\right\| = o\left(\|p_k\|\right)$ implies

$$||p_{k}|| = O\left(||p_{k}^{N}||\right)$$

$$= O\left(||x_{k} + p_{k}^{N} - x^{*} - (x_{k} - x^{*})||\right)$$

$$\leq O\left(||x_{k} + p_{k}^{N} - x^{*}|| + ||x_{k} - x^{*}||\right)$$

$$= O\left(||x_{k} - x^{*}||\right).$$

1.2 Basic ideas of quasi-Newton

We want to choose B_k such that

- 1. B_k is a good estimate of $\nabla^2 f(x_k)$ in the sense of (2), which guarantees superlinear convergence;
- 2. B_k can be formed by "cheap" operations, without actually computing the Hessian $\nabla^2 f(x_k)$.

We consider Quasi-Newton methods that only use *gradient* evaluation to compute B_k . Idea of getting information about $\nabla^2 f$ from ∇f follows from one form of Taylor's Theorem:

$$\nabla f(y) - \nabla f(x) = \int_0^1 \nabla^2 f(x + t(y - x)) (y - x) dt.$$

The first idea is to take finite differences $\nabla f(x + e_i) - \nabla f(x)$ along n directions e_i , i = 1, ..., n. This is too expensive.

Instead, we only use the gradients we will evaluate anyway, namely $\nabla f(x_k)$.

In the sequel, we discuss four popular Quasi-Newton methods: DFP, BFGS, SR1, and L-BFGS.

2 The DFP method

The DFP (Davidon-Fletcher-Powell) is one of the earliest efficient quasi-Newton methods.

Quadratic model

To derive the DFP method, we begin with the following local quadratic model of *f*:

$$f(x_k + p) \approx m_k(p) := f(x_k) + \langle \nabla f(x_k), p \rangle + \frac{1}{2} p^{\top} B_k p.$$

Note that $f(x_k) = m_k(0)$ and $\nabla f(x_k) = \nabla m_k(0)$. The QN search direction is given by

$$p_k = -B_k^{-1} \nabla f(x_k) = \operatorname*{argmin}_{p \in \mathbb{R}^d} m_k(p).$$

We then compute $x_{k+1} = x_k + \alpha_k p_k$, where α_k is stepsize determined using a line search procedure. Suppose B_k has been computed. We move on to the next iteration, where the quadratic model is

$$m_{k+1}(p) = f(x_{k+1}) + \langle \nabla f(x_{k+1}), p \rangle + \frac{1}{2} p^{\top} B_{k+1} p.$$

Instead of computing B_{k+1} from scratch, we will use B_k to compute B_{k+1} .

Secant equation

We want to choose B_{k+1} so that m_{k+1} is a good quadratic model of f. A reasonable condition is that the gradient of m_{k+1} agrees with the gradient of f at both x_k and x_{k+1} . By construction, we automatically have $\nabla m_{k+1}(0) = \nabla f(x_{k+1})$.

What about $\nabla f(x_k)$? Note that

$$\nabla m_{k+1}(-\alpha_k p_k) = \nabla f(x_{k+1}) - \alpha_k B_{k+1} p_k,$$

and we want the RHS to agree with $\nabla f(x_k)$. That is, we want B_{k+1} to satisfy the equation

$$\alpha_k B_{k+1} p_k = \nabla f(x_{k+1}) - \nabla f(x_k).$$

Let us introduce the shorthands

$$s_k := \alpha_k p_k = x_{k+1} - x_k$$
, displacement $y_k := \nabla f(x_{k+1}) - \nabla f(x_k)$. change in gradients

Then the above equation can be written compactly as

$$B_{k+1}s_k = y_k, (3)$$

which is called the secant equation.

Curvature condition

If $B_{k+1} \succ 0$, then right multiplying both sides of (3) by s_k^{\top} gives

$$s_k^{\top} y_k > 0, \tag{4}$$

which is called the *curvature condition*. This is a necessary for the existence of a p.d. B_k satisfying the secant equation (3).

• The curvature condition will be automatically satisfied if *f* is strongly convex, since

$$s_k^{\top} y_k = \langle \nabla f(x_{k+1}) - \nabla f(x_k), x_{k+1} - x_k \rangle > 0,$$

which is the strong monotonicity/coercivity property of the gradient.

• The curvature condition does not automatically hold for nonconvex functions. It holds if α_k (the stepsize for the *previous* iteration k) satisfies the second Wolfe condition. In particular, by WW2 (curvature condition), we have

$$\langle \nabla f(x_{k+1}), s_k \rangle \ge c_2 \langle \nabla f(x_k), s_k \rangle$$
, where $c_2 \in (0, 1)$,

hence

$$\langle y_k, s_k \rangle = \langle \nabla f(x_{k+1}) - \nabla f(x_k), s_k \rangle$$

$$\geq \underbrace{(c_2 - 1)}_{<0} \underbrace{\langle \nabla f(x_k), s_k \rangle}_{<0} > 0.$$

When the curvature condition holds, the secant equation $B_{k+1}s_k = y_k$ has infinitely many solutions.

Choosing B_{k+1}

To uniquely specify B_{k+1} , we can enforce that it is the "closest" matrix to B_k that satisfies the above conditions. In particular, we compute B_{k+1} by solving

$$\min_{B} \|B - B_k\|$$
s.t. $B = B^{\top}$

$$Bs_k = y_k,$$
(5)

where $\|\cdot\|$ is some matrix norm.

A norm that gives an easy-to-compute (and affine-invariant) solution is the weighted Frobenius norm

$$||A||_W := ||W^{1/2}AW^{1/2}||_F$$

where W is a p.d. weight matrix, $W^{1/2}$ denotes the matrix square root of W (HW1 Q6), and $\|C\|_F^2 := \sum_{i=1}^d \sum_{j=1}^d C_{ij}^2$ denotes the Frobenius norm of a matrix C. Here the weight W can be any matrix that satisfies $Wy_k = s_k$. For example, we can take $W = \bar{G}_k^{-1}$, where $\bar{G}_k = \int_0^1 \nabla^2 f(x_k + t\alpha_k p_k) dt$ is the average Hessian. Then $Wy_k = s_k$ holds by Taylor's Theorem:

$$\int_0^1 \nabla^2 f(x_k + t(x_{k+1} - x_k)) \underbrace{(x_{k+1} - x_k)}_{s_k} dt = \underbrace{\nabla f(x_k + 1) - \nabla f(x_k)}_{y_k}.$$

The DFP update rules

With the above choice of the norm and weigh matrix, the unique solution to the problem (5) is given by

(DFP)
$$B_{k+1} = \left(I - \frac{y_k s_k^\top}{y_k^\top s_k}\right) B_k \left(I - \frac{s_k y_k^\top}{y_k^\top s_k}\right) + \frac{y_k y_k^\top}{y_k^\top s_k}. \tag{6}$$

The inverse $H_{k+1} = B_{k+1}^{-1}$ can also be computed recursively and efficiently, using the Sherman-Morrison-Woodbury formula (exercise):

(DFP)
$$H_{k+1} = H_k - \underbrace{\frac{H_k y_k y_k^\top H_k}{y_k^\top H_k y_k}}_{\text{rank-1}} + \underbrace{\frac{s_k s_k^\top}{y_k^\top s_k}}_{\text{rank-1}}.$$
 (7)

The above two equations involve rank-2 modifications (exercise: show that $B_{k+1} - B_k$ has rank at most 2). This structure can be exploited for efficient storage and computation.

In the least-change problem (5), we do not explicit enforce positive definiteness of *B*. This property holds automatically.

Fact 1. If B_k and H_k are positive definite and $y_k^{\top} s_k > 0$, then B_{k+1} and H_{k+1} are also positive definite.

Proof. Take any vector $z \neq 0$. From (6) we have

$$z^{\top} B_{k+1} z = \left(z - s_k \cdot \frac{y_k^{\top} z}{y_k^{\top} s_k}\right)^{\top} B_k \left(z - s_k \cdot \frac{y_k^{\top} z}{y_k^{\top} s_k}\right) + \frac{(y_k^{\top} z)^2}{y_k^{\top} s_k}.$$

If $y_k^{\top}z \neq 0$, the second RHS term is positive. If $y_k^{\top}z = 0$, then $z - s_k \cdot \frac{y_k^{\top}z}{y_k^{\top}s_k} = z \neq 0$ and hence the first RHS term is positive (since $B_k \succ 0$). We conclude that $B_{k+1} \succ 0$ and consequently $H_{k+1} = B_{k+1}^{-1} \succ 0$.

DFP is a precursor of the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method, the most popular quasi-Newton method.

Appendices

Sherman-Morrison-Woodbury formula:

$$(A + UV^{\top})^{-1} = A^{-1} - A^{-1}U(I + V^{\top}AU)^{-1}V^{\top}A^{-1},$$

which is valid when the matrix dimensions are compatible and all inverses on the RHS are well-defined.