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Lecture 24: Trust-Region Methods

Yudong Chen

So far, we have been looking at methods of the form

xk+1 = xk − αk B−1
k ∇ f (xk)︸ ︷︷ ︸

−pk

,

where Bk ≻ 0. Examples:

• Bk = I: steepest descent;

• Bk = ∇2 f (xk): (damped) Newton’s method

• Bk approximates ∇2 f (xk): quasi-Newton method.

In all these methods, we first determine the search direction pk, then choose the stepsize αk.
In Trust Region (TR) methods, we first determine the size of the step, then the direction.

1 Trust region method

We want to compute the step pk that gives the next iterate xk+1 = xk + pk.
Let Bk ∈ Rd×d be given. Typically, Bk equals ∇2 f (xk) or an approximation thereof obtained by

a Quasi-Newton method (say SR1). We use Bk to construct the following quadratic approximate
model of f around xk:

mk(p) := f (xk) + ⟨∇ f (xk), p⟩+ 1
2

p⊤Bk p.

Basic idea of TR: to compute the direction pk, we minimize mk(p) over a region (a ball centered
at xk) within which we trust that mk is a good approximation of f .

Note that we do not require Bk ≻ 0. In particular, we can use an indefinite ∇2 f (xk) without
modification.

Formally, the (exact) TR direction is given by

pk := argmin
p∈Rd :∥p∥≤∆k

mk(p),

where ∆k is the radius of the trust region.

Example 1. Suppose f (x) = x2
1 − x2

2, which is a nonconvex quadratic function. The quadratic
model is the function itself: mk(p) = f (xk + p). Suppose we are current at xk = 0. Then ∇ f (xk) =
0, so gradient descent (GD) and Newton’s method will stay at 0 (a stationary point). In contrast,
TR method will take the step

pk = argmin
p:∥p∥≤∆k

mk(p)

= argmin
p:p2

1+p2
2≤∆2

k

{
(0 + p1)

2 − (0 + p2)
2} = (0, ∆k) or (0,−∆k).

1



UW-Madison CS/ISyE/Math/Stat 726 Spring 2024

For TR applied to more general functions, see the illustration below from Nocedal-Wright:

To completely specify the TR method, we need to decide:

1. how to choose the radius ∆k,

2. how and to what accuracy to solve the subproblem minp∈Rd :∥p∥≤∆k
mk(p).

2 Choosing the radius ∆k

Define

ρk :=

actual reduction︷ ︸︸ ︷
f (xk)− f (xk + pk)

mk(0)− mk(pk)︸ ︷︷ ︸
predicted reduction,≥0

.

The ratio ρk tells us whether we are making progress, and if so, how much.
General idea:

1. If ρk is positive and large, then f and mk agree well within the trust region ∥p∥ ≤ ∆k. We can
try increasing ∆k in next iteration.

2. If ρk is small or negative, we should consider decreasing ∆k (shrink the trust region).

(a) In particular, if ρk is negative, then f has increased. We should reject the step pk and
stay at xk.

The following algorithm describes the process.
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Algorithm 1 Trust Region

Input: ∆̂ > 0 (largest radius), ∆0 ∈ (0, ∆̂) (initial radius), η ∈ [0, 1/4) (acceptance threshold)
for k = 0, 1, 2, . . .

pk = argminp:∥p∥≤∆k
mk(p) (or compute an approximate minimizer)

ρk =
f (xk)− f (xk+pk)
mk(0)−mk(pk)

if ρk <
1
4 : \\ insufficient progress

∆k+1 =
1
4

∆k \\ reduce radius

else:
if ρk >

3
4 and ∥pk∥ = ∆k: \\ sufficient progress, active trust region

∆k+1 = min
{

2∆k, ∆̂
}

\\ increase radius

else: \\ sufficient progress, inactive trust region

∆k+1 = ∆ \\ keep radius

if ρk > η: \\ sufficient progress

xk+1 = xk + pk \\ accept step

else: \\ insufficient progress

xk+1 = xk \\ reject step

end for

3 Exact minimization of mk

In each iteration of Algorithm 1, we need to solve the TR sub-problem

min
p:∥p∥≤∆k

mk(p) := fk + g⊤k p +
1
2

p⊤Bk p, (Pmk )

where we introduce the shorthands fk := f (xk) and gk := ∇ f (xk). This is a quadratic minimiza-
tion problem over an Eucludean ball.

The theorem below characterizes the exact minimizer p∗k = argminp:∥p∥≤∆k
mk(p).

Theorem 1 (Characterizing the solution to (Pmk )). The vector p∗ ∈ Rd is a global solution to the
problem (Pmk ) if and only if p∗ is feasible (i.e., ∥p∗∥ ≤ ∆k) and there exists λ ≥ 0 such that the following
condition holds:

1. (Bk + λI)p∗ = −gk,

2. λ(∆k − ∥p∗∥) = 0 (complementary slackness),

3. Bk + λI ≽ 0.
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The complete proof of Theorem 1 makes use of Lagrangian multipliers, which we will not
delve into.

Exercise 1. Prove the necessity of part 1 above using the first-order optimality condition for con-
strained optimization (Lecture 14, Theorem 1).

Some observations about Theorem 1:

• If ∥p∗∥ < ∆k, then the trust region constraint is inactive/irrelevant. In this case, part 2
implies λ = 0, part 1 implies Bk p∗ = −gk, and part 3 implies Bk ≽ 0. See p∗3 in the figure
below.

• In the other case where ∥p∗∥ = ∆k, we have λ > 0. Part 1 of Theorem 1 gives:

λp∗ = −Bk p∗ − gk = −∇mk(p∗),

hence p∗ is parallel to −∇mk(p∗) and thus normal to contours of mk; equivalently, −∇mk(p∗) ∈
NX (p∗), where X = {p : ∥p∥ ≤ ∆k}. See p∗1 and p∗2 in the figure below.

To find the exact minimizer p∗k , one may use an iterative method to search for the λ that satisfies
the conditions in Theorem 1.

4 Approximate methods for minimizing mk

Solving the TR subproblem (Pmk ) exactly is usually unnecessary. After all, mk is only a local ap-
proximation of actual objective function f .

4.1 Algorithms based on the Cauchy point

The Cauchy point pC
k is defined by the following procedure.
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Algorithm 2 Cauchy Point Calculation
Compute

pS
k = argmin

p:∥p∥≤∆k

{
fk + g⊤k p

}
,

τk = argmin
τ≥0:∥τpS

k∥≤∆k

mk(τpS
k).

Return pC
k = τk pS

k

Note that pS
k is the minimizer of the linear model fk + g⊤k p within the trust region; that is, pS

k
solves the linear version of the TR subproblem (Pmk ). The scalar τk is obtained by minimizing the
quadratic model mk along the direction of pS

k .

The Cauchy point can be easily computed.

Lemma 1. The Cauchy point pC
k = τk pS

k is given explicitly by

pS
k = − ∆k

∥gk∥
gk, τk =

1 g⊤k Bkgk ≤ 0,

min
{

1, ∥gk∥3

∆k g⊤k Bk gk

}
, g⊤k Bkgk > 0.

Proof. It is easy to see that

pS
k = − ∆k

∥gk∥
gk,

which is in the direction of the negative gradient. Hence

mk(τpS
k) = fk + τ

〈
gk,− ∆k

∥gk∥
gk

〉
+

τ2

2

(
∆k

∥gk∥
gk

)⊤
Bk

(
∆k

∥gk∥
gk

)
= fk −τ∆k ∥gk∥︸ ︷︷ ︸

≤0

+
τ2

2
∆2

k

∥gk∥2 g⊤k Bkgk.

The RHS is a one-dimensional quadratic function of τ. Since
∥∥pS

k

∥∥ = ∆k, the trust-region constraint∥∥τpS
k

∥∥ ≤ ∆k is equivalent to 0 ≤ τ ≤ 1.
Case 1: g⊤k Bkgk ≤ 0. Then mk(τpS

k) is decreasing in τ, so the minimizer is on the boundary of
the trust region, that is, τk =

∆k

∥pS
k∥

= 1.
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Case 2: g⊤k Bkgk > 0. Then mk(τpS
k) is a convex quadratic in τ, hence τk is either the uncon-

strained minimizer of mk
(
τpS

k

)
, or 1 (on the boundary), whichever is smaller.

Combining Case 1 + Case 2, we conclude that

τk =

1 g⊤k Bkgk ≤ 0,

min
{

1, ∥gk∥3

∆k g⊤k Bk gk

}
, g⊤k Bkgk > 0.

4.2 Improving the Cauchy point

If we simply using the Cauchy point, pk = pC
k , then the TR method will move in the direction

−gk = −∇ f (xk) and hence converge no faster than gradient descent.
The Cauchy point only uses the matrix Bk to determine the length of the step but not the

direction. To achieve faster convergence, we need to make more substantial use of Bk.
Two ways to improve upon the Cauchy point are

• The dogleg method;

• Two-dimensional subspace minimization.

We will not go into the details. Please refer to the appendix (optional).

5 Convergence analysis of trust-region methods

In this section, we state without proof several convergence results for TR methods.

5.1 Global convergence to a stationary point

The Cauchy point pC
k can be used as a benchmark. To assess the quality of another approximate

solution pk to the TR subproblem (Pmk ), we compare it with pC
k . One can show that for a TR method

to converge globally, it is sufficient if pk reduces mk by at least some constant times the decrease
from the Cauchy point, i.e.,

mk(pk)− mk(0) ≤ c
(

mk

(
pC

k

)
− mk(0)

)
. (1)

Note that (1) is satisfied by the exact minimizer of the TR subproblem (Pmk ), the dogleg method
and the 2D subspace minimization method with c = 1.

To state the formal theorem, we need some definitions and assumptions.

Consider the level set

S :=
{

x ∈ Rd | f (x) ≤ f (x0)
}

.

Define an open neighborhood of S by

S(R0) := {x | ∥x − y∥ < R0 for some y ∈ S} .
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Assumptions:

1. ∀k : ∥Bk∥2 ≤ β < ∞.

2. f is bounded below on S.

3. f is smooth (i.e., has Lipschitz continuous gradient) on S(R0) for some R0 > 0.

Theorem 2 (Theorems 4.4 and 4.5 in Nocedal-Wright). Let η = 0 in Algorithm 1. Suppose that the
assumptions stated above are satisfied, and the step pk satisfies ∥pk∥ ≤ ∆k and the comparison inequality
(1) for all k. Then

1. pk has sufficient progress:

mk(pk)− mk(0) ≤ − c
2
∥gk∥min

{
∆k,

∥gk∥
∥Bk∥

}
, ∀k. (2)

2. The gradient sequence {gk} has a limit point at zero:

lim inf
k→∞

∥gk∥ = 0.

Part 1 of Theorem 3 can be viewed as a “descent lemma” for TR methods and implies the conver-
gence property in Part 2. This is similar to how the convergence of gradient descent follows from
its descent lemma.

Theorem 3 assumes that η = 0 is used in the Algorithm 1; that is, we always accept the step if
there is any progress. If we use η > 0 (rejects steps with low progress), we have the stronger result
that gk → 0. See Theorem 4.6 in Nocedal-Wright.

5.2 Local convergence of TR-Newton method

The results discussed so far hold for a general Bk. We now specialize to TR methods that use the
exact Hessian Bk = ∇2 f (xk) for all sufficiently large k. (We refer to these methods as TR-Newton.)
In this case, we expect that the TR bound ∥pk∥ ≤ ∆k becomes inactive near the minimizer of f and
thus an approximate solution pk to the TR subproblem (Pmk ) becomes similar to the Newton step
pN

k := −∇2 f (xk)
−1∇ f (xk).

The theorem below establishes superlinear local convergence of TR-Newton.

Theorem 3 (Theorem 4.9 in Nocedal-Wright). Let f be twice continuously differentiable (with β1-
Lipschitz gradients and L-Lipschitz Hessians) in a neighborhood of a local minimizer x∗ satisfying ∇ f (x∗) =
0,∇2 f (x∗) ≻ 0. Suppose that

1. {xk} converges to x∗;

2. for all k sufficiently large, the TR algorithm with Bk = ∇2 f (xk) chooses pk such that

(a) the sufficient progress condition (2) holds, and

(b) pk is asymptotically similar to pN
k = −∇2 f (xk)

−1gk whenever
∥∥pN

k

∥∥ ≤ ∆k
2 , i.e.,∥∥∥pk − pN

k

∥∥∥ = o(
∥∥∥pN

k

∥∥∥). (3)

Then the TR bound becomes inactive for all sufficiently large k and the convergence of {xk} to x∗ is super-
linear.
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Theorem 3 is proved by invoking the generic quasi-Newton result in Lecture 21, Theorem 2,
which states that the condition (3) implies superlienar convergence.

Appendices
All the materials in this appendix are optional.

A The dogleg method

The Dogleg method is used only when Bk ≻ 0.
Intuition: consider two extremes.

• If ∆k is small, then ∆2
k ≪ ∆k. Hence for ∥p∥ ≤ ∆k, the quadratic model is approximately

linear: mk(p) ≈ fk + g⊤k p. In this case, it is approximately optimal to use the Cauchy point,
i.e., p∗k ≈ pC

k .

• If ∆k is large, then the constraint ∥pk∥ ≤ ∆k becomes irrelevant. In this case, p∗k approxi-
mately equals the unconstrained minimizer of mk, i.e., p∗k ≈ −B−1

k pk =: pB
k .

The dogleg method interpolates between these two extremes.
Formally, define

pU
k := −

g⊤k gk

g⊤k Bkgk
gk = (unconstrained) GD step with exact line search

pB
k := −B−1

k gk = unconstrained minimizer of mk

Consider the “dogleg path” defined below:

p̃k(τ) :=

{
τpU

k , 0 ≤ τ ≤ 1,
pU

k + (τ − 1)(pB
k − pU

k ), 1 ≤ τ ≤ 2.

Note that p̃k(τ) consists of two line segments and is an approximation of the optimal path p∗k (∆).
The dogleg step is given by constrained minimizer over the path p̃(τ), i.e.,

pD
k := min

0≤τ≤2
∥ p̃k(τ)∥≤∆

mk ( p̃k(τ)) .

Illustration:
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Another illustration:

 

Thanks to the following lemma, it is easy to compute the minimizer pD
k along the dogleg path.

Lemma 2 (Lemma 4.2 in Nocedal-Wright). Let Bk be positive definite. Then

(i) ∥ p̃k(τ)∥ is an increasing function of τ;

(ii) mk ( p̃k(τ)) is a decreasing function of τ.

Consequently:

• If
∥∥pB

∥∥ < ∆, then the dogleg path does not intersect the TR boundary ∥p∥ = ∆. Since mk is
decreasing in τ,we have pD

k = p̃k(2) = pB.

• If
∥∥pB

∥∥ ≥ ∆, then the dogleg path intersects the boundary at one point, which is pD
k . The

corresponding τ can be computed by solving the scalar equation ∥ p̃k(τ)∥ = ∆.

B Two-dimensional subspace minimization

The dogleg method minimizes over the one-dimensional path defined by pU and pB. This can
generalized by minimizing over the 2-D subspace spanned by pU ∝ −gk and pB = −B−1

k gk.
Formally:

p2D
k = argmin

p∈Rd

{
mk(p) : ∥p∥ ≤ ∆k, p ∈ span{gk, B−1

k gk}
}

.

The minimizer is relatively easy to compute (amounts to finding the roots of a fourth degree
polynomial).

Unlike dogleg, 2D-subspace minimization can readily be adapted to handle indefinite Bk. In
this case, there exists λ > 0 such that p∗k = −(Bk + λI)−1gk (by Theorem 1 from the last lecture).
Therefore, we can change the feasible 2D subspace to

span
{

gk, (Bk + αk I)−1 gk

}
,

where αk ∈ (−λmin(Bk),−2λmin(Bk)) .
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