Lecture 24: Trust-Region Methods

Yudong Chen

So far, we have been looking at methods of the form

$$x_{k+1} = x_k - \alpha_k \underbrace{B_k^{-1} \nabla f(x_k)}_{-p_k},$$

where $B_k \succ 0$. Examples:

- $B_k = I$: steepest descent;
- $B_k = \nabla^2 f(x_k)$: (damped) Newton's method
- B_k approximates $\nabla^2 f(x_k)$: quasi-Newton method.

In all these methods, we first determine the search direction p_k , then choose the stepsize α_k . In Trust Region (TR) methods, we first determine the size of the step, then the direction.

1 Trust region method

We want to compute the step p_k that gives the next iterate $x_{k+1} = x_k + p_k$.

Let $B_k \in \mathbb{R}^{d \times d}$ be given. Typically, B_k equals $\nabla^2 f(x_k)$ or an approximation thereof obtained by a Quasi-Newton method (say SR1). We use B_k to construct the following quadratic approximate model of f around x_k :

$$m_k(p) := f(x_k) + \langle \nabla f(x_k), p \rangle + \frac{1}{2} p^\top B_k p.$$

Basic idea of TR: to compute the direction p_k , we minimize $m_k(p)$ over a region (a ball centered at x_k) within which we trust that m_k is a good approximation of f.

Note that we do *not* require $B_k > 0$. In particular, we can use an indefinite $\nabla^2 f(x_k)$ without modification.

Formally, the (exact) TR direction is given by

$$p_k := \operatorname*{argmin}_{p \in \mathbb{R}^d : \|p\| \leq \Delta_k} m_k(p),$$

where Δ_k is the radius of the trust region.

Example 1. Suppose $f(x) = x_1^2 - x_2^2$, which is a nonconvex quadratic function. The quadratic model is the function itself: $m_k(p) = f(x_k + p)$. Suppose we are current at $x_k = \mathbf{0}$. Then $\nabla f(x_k) = \mathbf{0}$, so gradient descent (GD) and Newton's method will stay at $\mathbf{0}$ (a stationary point). In contrast, TR method will take the step

$$p_k = \underset{p:||p|| \le \Delta_k}{\operatorname{argmin}} m_k(p)$$

$$= \underset{p:p_1^2 + p_2^2 \le \Delta_k^2}{\operatorname{argmin}} \left\{ (0 + p_1)^2 - (0 + p_2)^2 \right\} = (0, \Delta_k) \text{ or } (0, -\Delta_k).$$

For TR applied to more general functions, see the illustration below from Nocedal-Wright:

To completely specify the TR method, we need to decide:

- 1. how to choose the radius Δ_k ,
- 2. how and to what accuracy to solve the subproblem $\min_{p \in \mathbb{R}^d: ||p|| \leq \Delta_k} m_k(p)$.

2 Choosing the radius Δ_k

Define

$$\rho_k := \underbrace{\frac{f(x_k) - f(x_k + p_k)}{m_k(0) - m_k(p_k)}}_{\text{predicted reduction,} \ge 0}$$

The ratio ρ_k tells us whether we are making progress, and if so, how much. General idea:

- 1. If ρ_k is positive and large, then f and m_k agree well within the trust region $||p|| \le \Delta_k$. We can try increasing Δ_k in next iteration.
- 2. If ρ_k is small or negative, we should consider decreasing Δ_k (shrink the trust region).
 - (a) In particular, if ρ_k is negative, then f has increased. We should reject the step p_k and stay at x_k .

The following algorithm describes the process.

Algorithm 1 Trust Region

Input: $\hat{\Delta} > 0$ (largest radius), $\Delta_0 \in (0, \hat{\Delta})$ (initial radius), $\eta \in [0, 1/4)$ (acceptance threshold) **for** k = 0, 1, 2, ...

 $p_k = \operatorname{argmin}_{p:\|p\| \leq \Delta_k} m_k(p)$ (or compute an approximate minimizer)

$$\rho_k = \frac{f(x_k) - f(x_k + p_k)}{m_k(0) - m_k(p_k)}$$

if $ho_k < rac{1}{4}$: \\ insufficient progress

$$\Delta_{k+1} = rac{1}{4} \Delta_k$$
 \\ reduce radius

else:

if $ho_k > \frac{3}{4}$ and $\|p_k\| = \Delta_k$: \\ sufficient progress, active trust region

$$\Delta_{k+1} = \min \left\{ 2\Delta_k, \hat{\Delta}
ight\} \qquad ext{\setminus increase radius}$$

else: \\ sufficient progress, inactive trust region

$$\Delta_{k+1} = \Delta$$
 \\ keep radius

if $\rho_k > \eta$: \\ sufficient progress

$$x_{k+1} = x_k + p_k$$
 \\ accept step

else: \\ insufficient progress

$$x_{k+1} = x_k$$
 \\ reject step

end for

3 Exact minimization of m_k

In each iteration of Algorithm 1, we need to solve the TR sub-problem

$$\min_{p:\|p\| \le \Delta_k} m_k(p) := f_k + g_k^{\top} p + \frac{1}{2} p^{\top} B_k p, \tag{P_{m_k}}$$

where we introduce the shorthands $f_k := f(x_k)$ and $g_k := \nabla f(x_k)$. This is a quadratic minimization problem over an Eucludean ball.

The theorem below characterizes the exact minimizer $p_k^* = \operatorname{argmin}_{p:\|p\| \leq \Delta_k} m_k(p)$.

Theorem 1 (Characterizing the solution to (P_{m_k})). The vector $p^* \in \mathbb{R}^d$ is a global solution to the problem (P_{m_k}) if and only if p^* is feasible (i.e., $||p^*|| \leq \Delta_k$) and there exists $\lambda \geq 0$ such that the following condition holds:

- $1. (B_k + \lambda I)p^* = -g_k,$
- 2. $\lambda(\Delta_k ||p^*||) = 0$ (complementary slackness),
- 3. $B_k + \lambda I \geq 0$.

The complete proof of Theorem 1 makes use of Lagrangian multipliers, which we will not delve into.

Exercise 1. Prove the necessity of part 1 above using the first-order optimality condition for constrained optimization (Lecture 14, Theorem 1).

Some observations about Theorem 1:

- If $||p^*|| < \Delta_k$, then the trust region constraint is inactive/irrelevant. In this case, part 2 implies $\lambda = 0$, part 1 implies $B_k p^* = -g_k$, and part 3 implies $B_k \geq 0$. See p^{*3} in the figure below.
- In the other case where $||p^*|| = \Delta_k$, we have $\lambda > 0$. Part 1 of Theorem 1 gives:

$$\lambda p^* = -B_k p^* - g_k = -\nabla m_k(p^*),$$

hence p^* is parallel to $-\nabla m_k(p^*)$ and thus normal to contours of m_k ; equivalently, $-\nabla m_k(p^*) \in N_{\mathcal{X}}(p^*)$, where $\mathcal{X} = \{p : \|p\| \le \Delta_k\}$. See p^{*1} and p^{*2} in the figure below.

Figure 4.2 Solution of trust-region subproblem for different radii Δ^1 , Δ^2 , Δ^3 .

To find the exact minimizer p_k^* , one may use an iterative method to search for the λ that satisfies the conditions in Theorem 1.

4 Approximate methods for minimizing m_k

Solving the TR subproblem (P_{m_k}) exactly is usually unnecessary. After all, m_k is only a local approximation of actual objective function f.

4.1 Algorithms based on the Cauchy point

The *Cauchy point* $p_k^{\mathbb{C}}$ is defined by the following procedure.

Algorithm 2 Cauchy Point Calculation

Compute

$$p_k^{\mathrm{S}} = \underset{p:\|p\| \leq \Delta_k}{\operatorname{argmin}} \left\{ f_k + g_k^{\mathsf{T}} p \right\},$$

$$\tau_k = \underset{\tau \geq 0: \|\tau p_k^{\mathrm{S}}\| \leq \Delta_k}{\operatorname{argmin}} m_k(\tau p_k^{\mathrm{S}}).$$

Return $p_k^{\text{C}} = \tau_k p_k^{\text{S}}$

Note that p_k^S is the minimizer of the *linear* model $f_k + g_k^T p$ within the trust region; that is, p_k^S solves the linear version of the TR subproblem (P_{m_k}). The scalar τ_k is obtained by minimizing the *quadratic* model m_k along the direction of p_k^S .

Linear version, ignoring the quadratic part

The Cauchy point can be easily computed.

Lemma 1. The Cauchy point $p_k^C = \tau_k p_k^S$ is given explicitly by

$$p_k^S = -rac{\Delta_k}{\|g_k\|}g_k, \qquad au_k = egin{cases} 1 & g_k^ op B_k g_k \leq 0, \ \min\left\{1, rac{\|g_k\|^3}{\Delta_k g_k^ op, B_k g_k}
ight\}, & g_k^ op B_k g_k > 0. \end{cases}$$

Proof. It is easy to see that

$$p_k^{\rm S} = -\frac{\Delta_k}{\|g_k\|} g_k,$$

which is in the direction of the negative gradient. Hence

$$m_{k}(\tau p_{k}^{S}) = f_{k} + \tau \left\langle g_{k}, -\frac{\Delta_{k}}{\|g_{k}\|} g_{k} \right\rangle + \frac{\tau^{2}}{2} \left(\frac{\Delta_{k}}{\|g_{k}\|} g_{k} \right)^{\top} B_{k} \left(\frac{\Delta_{k}}{\|g_{k}\|} g_{k} \right)$$

$$= f_{k} \underbrace{-\tau \Delta_{k} \|g_{k}\|}_{\leq 0} + \frac{\tau^{2}}{2} \frac{\Delta_{k}^{2}}{\|g_{k}\|^{2}} g_{k}^{\top} B_{k} g_{k}.$$

The RHS is a one-dimensional quadratic function of τ . Since $||p_k^S|| = \Delta_k$, the trust-region constraint $||\tau p_k^S|| \le \Delta_k$ is equivalent to $0 \le \tau \le 1$.

Case 1: $g_k^{\top} B_k g_k \leq 0$. Then $m_k(\tau p_k^S)$ is decreasing in τ , so the minimizer is on the boundary of the trust region, that is, $\tau_k = \frac{\Delta_k}{\|p_k^S\|} = 1$.

Case 2: $g_k^{\top} B_k g_k > 0$. Then $m_k(\tau p_k^S)$ is a convex quadratic in τ , hence τ_k is either the unconstrained minimizer of $m_k(\tau p_k^S)$, or 1 (on the boundary), whichever is smaller.

Combining Case 1 + Case 2, we conclude that

$$au_k = egin{cases} 1 & g_k^ op B_k g_k \leq 0, \ \min\left\{1, rac{\|g_k\|^3}{\Delta_k g_k^ op B_k g_k}
ight\}, & g_k^ op B_k g_k > 0. \end{cases}$$

4.2 Improving the Cauchy point

If we simply using the Cauchy point, $p_k = p_k^C$, then the TR method will move in the direction $-g_k = -\nabla f(x_k)$ and hence converge no faster than gradient descent.

The Cauchy point only uses the matrix B_k to determine the length of the step but not the direction. To achieve faster convergence, we need to make more substantial use of B_k .

Two ways to improve upon the Cauchy point are

- The dogleg method;
- Two-dimensional subspace minimization.

We will not go into the details. Please refer to the appendix (optional).

5 Convergence analysis of trust-region methods

In this section, we state without proof several convergence results for TR methods.

5.1 Global convergence to a stationary point

The Cauchy point p_k^C can be used as a benchmark. To assess the quality of another approximate solution p_k to the TR subproblem (P_{m_k}) , we compare it with p_k^C . One can show that for a TR method to converge globally, it is sufficient if p_k reduces m_k by at least some constant times the decrease from the Cauchy point, i.e.,

$$m_k(p_k) - m_k(0) \le c \left(m_k \left(p_k^{\mathsf{C}} \right) - m_k(0) \right). \tag{1}$$

Note that (1) is satisfied by the exact minimizer of the TR subproblem (P_{m_k}), the dogleg method and the 2D subspace minimization method with c = 1.

To state the formal theorem, we need some definitions and assumptions.

Consider the level set

$$S := \left\{ x \in \mathbb{R}^d \mid f(x) \le f(x_0) \right\}.$$

Define an open neighborhood of *S* by

$$S(R_0) := \{x \mid ||x - y|| < R_0 \text{ for some } y \in S\}.$$

Assumptions:

- 1. $\forall k : ||B_k||_2 \le \beta < \infty$.
- 2. *f* is bounded below on *S*.
- 3. f is smooth (i.e., has Lipschitz continuous gradient) on $S(R_0)$ for some $R_0 > 0$.

Theorem 2 (Theorems 4.4 and 4.5 in Nocedal-Wright). Let $\eta = 0$ in Algorithm 1. Suppose that the assumptions stated above are satisfied, and the step p_k satisfies $||p_k|| \leq \Delta_k$ and the comparison inequality (1) for all k. Then

1. p_k has sufficient progress:

$$m_k(p_k) - m_k(0) \le -\frac{c}{2} \|g_k\| \min\left\{\Delta_k, \frac{\|g_k\|}{\|B_k\|}\right\}, \quad \forall k.$$
 (2)

2. The gradient sequence $\{g_k\}$ has a limit point at zero:

$$\liminf_{k\to\infty}\|g_k\|=0.$$

Part 1 of Theorem 3 can be viewed as a "descent lemma" for TR methods and implies the convergence property in Part 2. This is similar to how the convergence of gradient descent follows from its descent lemma.

Theorem 3 assumes that $\eta = 0$ is used in the Algorithm 1; that is, we always accept the step if there is any progress. If we use $\eta > 0$ (rejects steps with low progress), we have the stronger result that $g_k \to 0$. See Theorem 4.6 in Nocedal-Wright.

5.2 Local convergence of TR-Newton method

The results discussed so far hold for a general B_k . We now specialize to TR methods that use the exact Hessian $B_k = \nabla^2 f(x_k)$ for all sufficiently large k. (We refer to these methods as TR-Newton.) In this case, we expect that the TR bound $||p_k|| \le \Delta_k$ becomes inactive near the minimizer of f and thus an approximate solution p_k to the TR subproblem (P_{m_k}) becomes similar to the Newton step $p_k^{\rm N} := -\nabla^2 f(x_k)^{-1} \nabla f(x_k)$.

The theorem below establishes superlinear local convergence of TR-Newton.

Theorem 3 (Theorem 4.9 in Nocedal-Wright). Let f be twice continuously differentiable (with β_1 -Lipschitz gradients and L-Lipschitz Hessians) in a neighborhood of a local minimizer x^* satisfying $\nabla f(x^*) = 0$, $\nabla^2 f(x^*) \succ 0$. Suppose that

- 1. $\{x_k\}$ converges to x^* ;
- 2. for all k sufficiently large, the TR algorithm with $B_k = \nabla^2 f(x_k)$ chooses p_k such that
 - (a) the sufficient progress condition (2) holds, and
 - (b) p_k is asymptotically similar to $p_k^N = -\nabla^2 f(x_k)^{-1} g_k$ whenever $||p_k^N|| \leq \frac{\Delta_k}{2}$, i.e.,

$$\left\| p_k - p_k^N \right\| = o(\left\| p_k^N \right\|). \tag{3}$$

Then the TR bound becomes inactive for all sufficiently large k and the convergence of $\{x_k\}$ to x^* is superlinear.

Theorem 3 is proved by invoking the generic quasi-Newton result in Lecture 21, Theorem 2, which states that the condition (3) implies superlienar convergence.

Appendices

All the materials in this appendix are optional.

A The dogleg method

The Dogleg method is used only when $B_k \succ 0$.

Intuition: consider two extremes.

- If Δ_k is small, then $\Delta_k^2 \ll \Delta_k$. Hence for $||p|| \leq \Delta_k$, the quadratic model is approximately linear: $m_k(p) \approx f_k + g_k^\top p$. In this case, it is approximately optimal to use the Cauchy point, i.e., $p_k^* \approx p_k^C$.
- If Δ_k is large, then the constraint $||p_k|| \leq \Delta_k$ becomes irrelevant. In this case, p_k^* approximately equals the unconstrained minimizer of m_k , i.e., $p_k^* \approx -B_k^{-1}p_k =: p_k^{\rm B}$.

The dogleg method interpolates between these two extremes.

Formally, define

$$p_k^{\text{U}} := -\frac{g_k^{\top} g_k}{g_k^{\top} B_k g_k} g_k = \text{(unconstrained) GD step with exact line search}$$
 $p_k^{\text{B}} := -B_k^{-1} g_k = \text{unconstrained minimizer of } m_k$

Consider the "dogleg path" defined below:

$$ilde{p}_k(au) := egin{cases} au p_k^{ ext{U}}, & 0 \leq au \leq 1, \ p_k^{ ext{U}} + (au - 1)(p_k^{ ext{B}} - p_k^{ ext{U}}), & 1 \leq au \leq 2. \end{cases}$$

Note that $\tilde{p}_k(\tau)$ consists of two line segments and is an approximation of the optimal path $p_k^*(\Delta)$. The dogleg step is given by constrained minimizer over the path $\tilde{p}(\tau)$, i.e.,

$$p_k^{\mathrm{D}} := \min_{\substack{0 \leq \tau \leq 2 \\ \parallel \tilde{p}_k(\tau) \parallel \leq \Delta}} m_k\left(\tilde{p}_k(\tau)\right).$$

Illustration:

Another illustration:

Thanks to the following lemma, it is easy to compute the minimizer p_k^D along the dogleg path.

Lemma 2 (Lemma 4.2 in Nocedal-Wright). Let B_k be positive definite. Then

- (i) $\|\tilde{p}_k(\tau)\|$ is an increasing function of τ ;
- (ii) $m_k(\tilde{p}_k(\tau))$ is a decreasing function of τ .

Consequently:

- If $||p^{B}|| < \Delta$, then the dogleg path does not intersect the TR boundary $||p|| = \Delta$. Since m_k is decreasing in τ ,we have $p_k^D = \tilde{p}_k(2) = p^B$.
- If $||p^{B}|| \ge \Delta$, then the dogleg path intersects the boundary at one point, which is p_{k}^{D} . The corresponding τ can be computed by solving the scalar equation $||\tilde{p}_{k}(\tau)|| = \Delta$.

B Two-dimensional subspace minimization

The dogleg method minimizes over the one-dimensional path defined by p^{U} and p^{B} . This can generalized by minimizing over the 2-D subspace spanned by $p^{U} \propto -g_{k}$ and $p^{B} = -B_{k}^{-1}g_{k}$. Formally:

$$p_k^{\text{2D}} = \operatorname*{argmin}_{p \in \mathbb{R}^d} \left\{ m_k(p) : \|p\| \le \Delta_k, p \in \operatorname{span}\{g_k, B_k^{-1}g_k\} \right\}.$$

The minimizer is relatively easy to compute (amounts to finding the roots of a fourth degree polynomial).

Unlike dogleg, 2D-subspace minimization can readily be adapted to handle indefinite B_k . In this case, there exists $\lambda > 0$ such that $p_k^* = -(B_k + \lambda I)^{-1}g_k$ (by Theorem 1 from the last lecture). Therefore, we can change the feasible 2D subspace to

span
$$\left\{g_k, \left(B_k + \alpha_k I\right)^{-1} g_k\right\}$$
,

where $\alpha_k \in (-\lambda_{\min}(B_k), -2\lambda_{\min}(B_k))$.