Lecture 24: Trust-Region Methods

Yudong Chen

So far, we have been looking at methods of the form

$$
x_{k+1}=x_{k}-\alpha_{k} \underbrace{B_{k}^{-1} \nabla f\left(x_{k}\right)}_{-p_{k}},
$$

where $B_{k} \succ 0$. Examples:

- $B_{k}=I$: steepest descent;
- $B_{k}=\nabla^{2} f\left(x_{k}\right)$: (damped) Newton's method
- B_{k} approximates $\nabla^{2} f\left(x_{k}\right)$: quasi-Newton method.

In all these methods, we first determine the search direction p_{k}, then choose the stepsize α_{k}.
In Trust Region (TR) methods, we first determine the size of the step, then the direction.

1 Trust region method

We want to compute the step p_{k} that gives the next iterate $x_{k+1}=x_{k}+p_{k}$.
Let $B_{k} \in \mathbb{R}^{d \times d}$ be given. Typically, B_{k} equals $\nabla^{2} f\left(x_{k}\right)$ or an approximation thereof obtained by a Quasi-Newton method (say SR1). We use B_{k} to construct the following quadratic approximate model of f around x_{k} :

$$
m_{k}(p):=f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), p\right\rangle+\frac{1}{2} p^{\top} B_{k} p .
$$

Basic idea of TR: to compute the direction p_{k}, we minimize $m_{k}(p)$ over a region (a ball centered at x_{k}) within which we trust that m_{k} is a good approximation of f.

Note that we do not require $B_{k} \succ 0$. In particular, we can use an indefinite $\nabla^{2} f\left(x_{k}\right)$ without modification.

Formally, the (exact) TR direction is given by

$$
p_{k}:=\underset{p \in \mathbb{R}^{d}:\|p\| \leq \Delta_{k}}{\operatorname{argmin}} m_{k}(p),
$$

where Δ_{k} is the radius of the trust region.
Example 1. Suppose $f(x)=x_{1}^{2}-x_{2}^{2}$, which is a nonconvex quadratic function. The quadratic model is the function itself: $m_{k}(p)=f\left(x_{k}+p\right)$. Suppose we are current at $x_{k}=\mathbf{0}$. Then $\nabla f\left(x_{k}\right)=$ 0 , so gradient descent (GD) and Newton's method will stay at $\mathbf{0}$ (a stationary point). In contrast, TR method will take the step

$$
\begin{aligned}
p_{k} & =\underset{p:\|p\| \leq \Delta_{k}}{\operatorname{argmin}} m_{k}(p) \\
& =\underset{p: p_{1}^{2}+p_{2}^{2} \leq \Delta_{k}^{2}}{\operatorname{argmin}}\left\{\left(0+p_{1}\right)^{2}-\left(0+p_{2}\right)^{2}\right\}=\left(0, \Delta_{k}\right) \text { or }\left(0,-\Delta_{k}\right) .
\end{aligned}
$$

For TR applied to more general functions, see the illustration below from Nocedal-Wright:

To completely specify the TR method, we need to decide:

1. how to choose the radius Δ_{k},
2. how and to what accuracy to solve the subproblem $\min _{p \in \mathbb{R}^{d}:\|p\| \leq \Delta_{k}} m_{k}(p)$.

2 Choosing the radius Δ_{k}

Define

$$
\rho_{k}:=\frac{\overbrace{f\left(x_{k}\right)-f\left(x_{k}+p_{k}\right)}^{\text {actual reduction }}}{\underbrace{m_{k}(0)-m_{k}\left(p_{k}\right)}_{\text {predicted reduction }, \geq 0}}
$$

The ratio ρ_{k} tells us whether we are making progress, and if so, how much.
General idea:

1. If ρ_{k} is positive and large, then f and m_{k} agree well within the trust region $\|p\| \leq \Delta_{k}$. We can try increasing Δ_{k} in next iteration.
2. If ρ_{k} is small or negative, we should consider decreasing Δ_{k} (shrink the trust region).
(a) In particular, if ρ_{k} is negative, then f has increased. We should reject the step p_{k} and stay at x_{k}.

The following algorithm describes the process.

```
Algorithm 1 Trust Region
Input: \(\hat{\Delta}>0\) (largest radius), \(\Delta_{0} \in(0, \hat{\Delta})\) (initial radius), \(\eta \in[0,1 / 4)\) (acceptance threshold)
for \(k=0,1,2, \ldots\)
    \(p_{k}=\operatorname{argmin}_{p:\|p\| \leq \Delta_{k}} m_{k}(p)\) (or compute an approximate minimizer)
    \(\rho_{k}=\frac{f\left(x_{k}\right)-f\left(x_{k}+p_{k}\right)}{m_{k}(0)-m_{k}\left(p_{k}\right)}\)
    if \(\rho_{k}<\frac{1}{4}: \quad \backslash \backslash\) insufficient progress
        \(\Delta_{k+1}=\frac{1}{4} \Delta_{k} \quad \backslash\) reduce radius
    else:
\[
\begin{aligned}
\text { if } \rho_{k}>\frac{3}{4} \text { and }\left\|p_{k}\right\|=\Delta_{k}: \quad \text { \\
sufficient progress, active trust region } \\
\Delta_{k+1}=\min \left\{2 \Delta_{k}, \hat{\Delta}\right\} \quad \text { increase radius }
\end{aligned}
\]
```

 else: \(\ \backslash\) sufficient progress, inactive trust region
 $$
\Delta_{k+1}=\Delta \quad \backslash \backslash \text { keep radius }
$$

if $\rho_{k}>\eta: \quad \backslash \backslash$ sufficient progress

$$
x_{k+1}=x_{k}+p_{k} \quad \backslash \backslash \text { accept step }
$$

else:
 insufficient progress

$$
x_{k+1}=x_{k} \quad \text { \\ reject step }
$$

end for

3 Exact minimization of m_{k}

In each iteration of Algorithm 1, we need to solve the TR sub-problem

$$
\begin{equation*}
\min _{p:\|p\| \leq \Delta_{k}} m_{k}(p):=f_{k}+g_{k}^{\top} p+\frac{1}{2} p^{\top} B_{k} p, \tag{k}
\end{equation*}
$$

where we introduce the shorthands $f_{k}:=f\left(x_{k}\right)$ and $g_{k}:=\nabla f\left(x_{k}\right)$. This is a quadratic minimization problem over an Eucludean ball.

The theorem below characterizes the exact minimizer $p_{k}^{*}=\operatorname{argmin}_{p:\|p\| \leq \Delta_{k}} m_{k}(p)$.
Theorem 1 (Characterizing the solution to $\left(P_{m_{k}}\right)$). The vector $p^{*} \in \mathbb{R}^{d}$ is a global solution to the problem $\left(P_{m_{k}}\right)$ if and only if p^{*} is feasible (i.e., $\left\|p^{*}\right\| \leq \Delta_{k}$) and there exists $\lambda \geq 0$ such that the following condition holds:

1. $\left(B_{k}+\lambda I\right) p^{*}=-g_{k}$,
2. $\lambda\left(\Delta_{k}-\left\|p^{*}\right\|\right)=0$ (complementary slackness),
3. $B_{k}+\lambda I \succcurlyeq 0$.

The complete proof of Theorem 1 makes use of Lagrangian multipliers, which we will not delve into.

Exercise 1. Prove the necessity of part 1 above using the first-order optimality condition for constrained optimization (Lecture 14, Theorem 1).

Some observations about Theorem 1:

- If $\left\|p^{*}\right\|<\Delta_{k}$, then the trust region constraint is inactive/irrelevant. In this case, part 2 implies $\lambda=0$, part 1 implies $B_{k} p^{*}=-g_{k}$, and part 3 implies $B_{k} \succcurlyeq 0$. See $p^{* 3}$ in the figure below.
- In the other case where $\left\|p^{*}\right\|=\Delta_{k}$, we have $\lambda>0$. Part 1 of Theorem 1 gives:

$$
\lambda p^{*}=-B_{k} p^{*}-g_{k}=-\nabla m_{k}\left(p^{*}\right),
$$

hence p^{*} is parallel to $-\nabla m_{k}\left(p^{*}\right)$ and thus normal to contours of m_{k}; equivalently, $-\nabla m_{k}\left(p^{*}\right) \in$ $N_{\mathcal{X}}\left(p^{*}\right)$, where $\mathcal{X}=\left\{p:\|p\| \leq \Delta_{k}\right\}$. See $p^{* 1}$ and $p^{* 2}$ in the figure below.

Figure 4.2 Solution of trust-region subproblem for different radii $\Delta^{1}, \Delta^{2}, \Delta^{3}$.
To find the exact minimizer p_{k}^{*}, one may use an iterative method to search for the λ that satisfies the conditions in Theorem 1.

4 Approximate methods for minimizing m_{k}

Solving the TR subproblem $\left(P_{m_{k}}\right)$ exactly is usually unnecessary. After all, m_{k} is only a local approximation of actual objective function f.

4.1 Algorithms based on the Cauchy point

The Cauchy point p_{k}^{C} is defined by the following procedure.

Algorithm 2 Cauchy Point Calculation
Compute

$$
\begin{aligned}
p_{k}^{S} & =\underset{p:\|p\| \leq \Delta_{k}}{\operatorname{argmin}}\left\{f_{k}+g_{k}^{\top} p\right\}, \\
\tau_{k} & =\underset{\tau \geq 0:\left\|\tau p_{k}^{S}\right\| \leq \Delta_{k}}{\operatorname{argmin}} m_{k}\left(\tau p_{k}^{S}\right) .
\end{aligned}
$$

Return $p_{k}^{C}=\tau_{k} p_{k}^{S}$
Note that p_{k}^{S} is the minimizer of the linear model $f_{k}+g_{k}^{\top} p$ within the trust region; that is, p_{k}^{S} solves the linear version of the TR subproblem $\left(P_{m_{k}}\right)$. The scalar τ_{k} is obtained by minimizing the quadratic model m_{k} along the direction of p_{k}^{S}.

The Cauchy point can be easily computed.
Lemma 1. The Cauchy point $p_{k}^{C}=\tau_{k} p_{k}^{S}$ is given explicitly by

$$
p_{k}^{S}=-\frac{\Delta_{k}}{\left\|g_{k}\right\|} g_{k}, \quad \tau_{k}= \begin{cases}1 & g_{k}^{\top} B_{k} g_{k} \leq 0, \\ \min \left\{1, \frac{\left\|g_{k}\right\|^{3}}{\Delta_{k} g_{k}^{\top} B_{k} g_{k}}\right\}, & g_{k}^{\top} B_{k} g_{k}>0 .\end{cases}
$$

Proof. It is easy to see that

$$
p_{k}^{\mathrm{S}}=-\frac{\Delta_{k}}{\left\|g_{k}\right\|} g_{k}
$$

which is in the direction of the negative gradient. Hence

$$
\begin{aligned}
m_{k}\left(\tau p_{k}^{\mathrm{S}}\right) & =f_{k}+\tau\left\langle g_{k}-\frac{\Delta_{k}}{\left\|g_{k}\right\|} g_{k}\right\rangle+\frac{\tau^{2}}{2}\left(\frac{\Delta_{k}}{\left\|g_{k}\right\|} g_{k}\right)^{\top} B_{k}\left(\frac{\Delta_{k}}{\left\|g_{k}\right\|} g_{k}\right) \\
& =f_{k} \underbrace{-\tau \Delta_{k}\left\|g_{k}\right\|}_{\leq 0}+\frac{\tau^{2}}{2} \frac{\Delta_{k}^{2}}{\left\|g_{k}\right\|^{2}} g_{k}^{\top} B_{k} g_{k} .
\end{aligned}
$$

The RHS is a one-dimensional quadratic function of τ. Since $\left\|p_{k}^{S}\right\|=\Delta_{k}$, the trust-region constraint $\left\|\tau p_{k}^{\mathrm{S}}\right\| \leq \Delta_{k}$ is equivalent to $0 \leq \tau \leq 1$.

Case 1: $g_{k}^{\top} B_{k} g_{k} \leq 0$. Then $m_{k}\left(\tau p_{k}^{S}\right)$ is decreasing in τ, so the minimizer is on the boundary of the trust region, that is, $\tau_{k}=\frac{\Delta_{k}}{\left\|p_{k}^{S}\right\|}=1$.

Case 2: $g_{k}^{\top} B_{k} g_{k}>0$. Then $m_{k}\left(\tau p_{k}^{S}\right)$ is a convex quadratic in τ, hence τ_{k} is either the unconstrained minimizer of $m_{k}\left(\tau p_{k}^{\mathrm{S}}\right)$, or 1 (on the boundary), whichever is smaller.

Combining Case $1+$ Case 2 , we conclude that

$$
\tau_{k}= \begin{cases}1 & g_{k}^{\top} B_{k} g_{k} \leq 0 \\ \min \left\{1, \frac{\left\|g_{k}\right\|^{3}}{\Delta_{k} g_{k}^{\top} B_{k} g_{k}}\right\}, & g_{k}^{\top} B_{k} g_{k}>0 .\end{cases}
$$

4.2 Improving the Cauchy point

If we simply using the Cauchy point, $p_{k}=p_{k}^{\mathrm{C}}$, then the TR method will move in the direction $-g_{k}=-\nabla f\left(x_{k}\right)$ and hence converge no faster than gradient descent.

The Cauchy point only uses the matrix B_{k} to determine the length of the step but not the direction. To achieve faster convergence, we need to make more substantial use of B_{k}.

Two ways to improve upon the Cauchy point are

- The dogleg method;
- Two-dimensional subspace minimization.

We will not go into the details. Please refer to the appendix (optional).

5 Convergence analysis of trust-region methods

In this section, we state without proof several convergence results for TR methods.

5.1 Global convergence to a stationary point

The Cauchy point p_{k}^{C} can be used as a benchmark. To assess the quality of another approximate solution p_{k} to the TR subproblem $\left(P_{m_{k}}\right)$, we compare it with p_{k}^{C}. One can show that for a TR method to converge globally, it is sufficient if p_{k} reduces m_{k} by at least some constant times the decrease from the Cauchy point, i.e.,

$$
\begin{equation*}
m_{k}\left(p_{k}\right)-m_{k}(0) \leq c\left(m_{k}\left(p_{k}^{C}\right)-m_{k}(0)\right) . \tag{1}
\end{equation*}
$$

Note that (1) is satisfied by the exact minimizer of the TR subproblem $\left(P_{m_{k}}\right)$, the dogleg method and the 2D subspace minimization method with $c=1$.

To state the formal theorem, we need some definitions and assumptions.
Consider the level set

$$
S:=\left\{x \in \mathbb{R}^{d} \mid f(x) \leq f\left(x_{0}\right)\right\} .
$$

Define an open neighborhood of S by

$$
S\left(R_{0}\right):=\left\{x \mid\|x-y\|<R_{0} \text { for some } y \in S\right\} .
$$

Assumptions:

1. $\forall k:\left\|B_{k}\right\|_{2} \leq \beta<\infty$.
2. f is bounded below on S.
3. f is smooth (i.e., has Lipschitz continuous gradient) on $S\left(R_{0}\right)$ for some $R_{0}>0$.

Theorem 2 (Theorems 4.4 and 4.5 in Nocedal-Wright). Let $\eta=0$ in Algorithm 1. Suppose that the assumptions stated above are satisfied, and the step p_{k} satisfies $\left\|p_{k}\right\| \leq \Delta_{k}$ and the comparison inequality (1) for all k. Then

1. p_{k} has sufficient progress:

$$
\begin{equation*}
m_{k}\left(p_{k}\right)-m_{k}(0) \leq-\frac{c}{2}\left\|g_{k}\right\| \min \left\{\Delta_{k}, \frac{\left\|g_{k}\right\|}{\left\|B_{k}\right\|}\right\}, \quad \forall k . \tag{2}
\end{equation*}
$$

2. The gradient sequence $\left\{g_{k}\right\}$ has a limit point at zero:

$$
\liminf _{k \rightarrow \infty}\left\|g_{k}\right\|=0
$$

Part 1 of Theorem 3 can be viewed as a "descent lemma" for TR methods and implies the convergence property in Part 2. This is similar to how the convergence of gradient descent follows from its descent lemma.

Theorem 3 assumes that $\eta=0$ is used in the Algorithm 1 ; that is, we always accept the step if there is any progress. If we use $\eta>0$ (rejects steps with low progress), we have the stronger result that $g_{k} \rightarrow 0$. See Theorem 4.6 in Nocedal-Wright.

5.2 Local convergence of TR-Newton method

The results discussed so far hold for a general B_{k}. We now specialize to TR methods that use the exact Hessian $B_{k}=\nabla^{2} f\left(x_{k}\right)$ for all sufficiently large k. (We refer to these methods as TR-Newton.) In this case, we expect that the TR bound $\left\|p_{k}\right\| \leq \Delta_{k}$ becomes inactive near the minimizer of f and thus an approximate solution p_{k} to the TR subproblem $\left(P_{m_{k}}\right)$ becomes similar to the Newton step $p_{k}^{\mathrm{N}}:=-\nabla^{2} f\left(x_{k}\right)^{-1} \nabla f\left(x_{k}\right)$.

The theorem below establishes superlinear local convergence of TR-Newton.
Theorem 3 (Theorem 4.9 in Nocedal-Wright). Let f be twice continuously differentiable (with $\beta_{1^{-}}$ Lipschitz gradients and L-Lipschitz Hessians) in a neighborhood of a local minimizer x^{*} satisfying $\nabla f\left(x^{*}\right)=$ $0, \nabla^{2} f\left(x^{*}\right) \succ 0$. Suppose that

1. $\left\{x_{k}\right\}$ converges to x^{*};
2. for all k sufficiently large, the $T R$ algorithm with $B_{k}=\nabla^{2} f\left(x_{k}\right)$ chooses p_{k} such that
(a) the sufficient progress condition (2) holds, and
(b) p_{k} is asymptotically similar to $p_{k}^{N}=-\nabla^{2} f\left(x_{k}\right)^{-1} g_{k}$ whenever $\left\|p_{k}^{N}\right\| \leq \frac{\Delta_{k}}{2}$, i.e.,

$$
\begin{equation*}
\left\|p_{k}-p_{k}^{N}\right\|=o\left(\left\|p_{k}^{N}\right\|\right) . \tag{3}
\end{equation*}
$$

Then the TR bound becomes inactive for all sufficiently large k and the convergence of $\left\{x_{k}\right\}$ to x^{*} is superlinear.

Theorem 3 is proved by invoking the generic quasi-Newton result in Lecture 21, Theorem 2, which states that the condition (3) implies superlienar convergence.

Appendices

All the materials in this appendix are optional.

A The dogleg method

The Dogleg method is used only when $B_{k} \succ 0$.
Intuition: consider two extremes.

- If Δ_{k} is small, then $\Delta_{k}^{2} \ll \Delta_{k}$. Hence for $\|p\| \leq \Delta_{k}$, the quadratic model is approximately linear: $m_{k}(p) \approx f_{k}+g_{k}^{\top} p$. In this case, it is approximately optimal to use the Cauchy point, i.e., $p_{k}^{*} \approx p_{k}^{C}$.
- If Δ_{k} is large, then the constraint $\left\|p_{k}\right\| \leq \Delta_{k}$ becomes irrelevant. In this case, p_{k}^{*} approximately equals the unconstrained minimizer of m_{k}, i.e., $p_{k}^{*} \approx-B_{k}^{-1} p_{k}=: p_{k}^{\mathrm{B}}$.
The dogleg method interpolates between these two extremes.
Formally, define

$$
\begin{aligned}
& p_{k}^{\mathrm{U}}:=-\frac{g_{k}^{\top} g_{k}}{g_{k}^{\top} B_{k} g_{k}} g_{k}=\text { (unconstrained) GD step with exact line search } \\
& p_{k}^{\mathrm{B}}:=-B_{k}^{-1} g_{k}=\text { unconstrained minimizer of } m_{k}
\end{aligned}
$$

Consider the "dogleg path" defined below:

$$
\tilde{p}_{k}(\tau):= \begin{cases}\tau p_{k}^{\mathrm{U}}, & 0 \leq \tau \leq 1 \\ p_{k}^{\mathrm{U}}+(\tau-1)\left(p_{k}^{\mathrm{B}}-p_{k}^{\mathrm{U}}\right), & 1 \leq \tau \leq 2\end{cases}
$$

Note that $\tilde{p}_{k}(\tau)$ consists of two line segments and is an approximation of the optimal path $p_{k}^{*}(\Delta)$. The dogleg step is given by constrained minimizer over the path $\tilde{p}(\tau)$, i.e.,

$$
p_{k}^{\mathrm{D}}:=\min _{\substack{0 \leq \tau \leq 2 \\\left\|\tilde{p}_{k}(\tau)\right\| \leq \Delta}} m_{k}\left(\tilde{p}_{k}(\tau)\right) .
$$

Illustration:

Another illustration:

Thanks to the following lemma, it is easy to compute the minimizer p_{k}^{D} along the dogleg path.
Lemma 2 (Lemma 4.2 in Nocedal-Wright). Let B_{k} be positive definite. Then
(i) $\left\|\tilde{p}_{k}(\tau)\right\|$ is an increasing function of τ;
(ii) $m_{k}\left(\tilde{p}_{k}(\tau)\right)$ is a decreasing function of τ.

Consequently:

- If $\left\|p^{\mathrm{B}}\right\|<\Delta$, then the dogleg path does not intersect the TR boundary $\|p\|=\Delta$. Since m_{k} is decreasing in τ, we have $p_{k}^{\mathrm{D}}=\tilde{p}_{k}(2)=p^{\mathrm{B}}$.
- If $\left\|p^{\mathrm{B}}\right\| \geq \Delta$, then the dogleg path intersects the boundary at one point, which is p_{k}^{D}. The corresponding τ can be computed by solving the scalar equation $\left\|\tilde{p}_{k}(\tau)\right\|=\Delta$.

B Two-dimensional subspace minimization

The dogleg method minimizes over the one-dimensional path defined by p^{U} and p^{B}. This can generalized by minimizing over the 2-D subspace spanned by $p^{\mathrm{U}} \propto-g_{k}$ and $p^{\mathrm{B}}=-B_{k}^{-1} g_{k}$.

Formally:

$$
p_{k}^{2 \mathrm{D}}=\underset{p \in \mathbb{R}^{d}}{\operatorname{argmin}}\left\{m_{k}(p):\|p\| \leq \Delta_{k}, p \in \operatorname{span}\left\{g_{k}, B_{k}^{-1} g_{k}\right\}\right\} .
$$

The minimizer is relatively easy to compute (amounts to finding the roots of a fourth degree polynomial).

Unlike dogleg, 2D-subspace minimization can readily be adapted to handle indefinite B_{k}. In this case, there exists $\lambda>0$ such that $p_{k}^{*}=-\left(B_{k}+\lambda I\right)^{-1} g_{k}$ (by Theorem 1 from the last lecture). Therefore, we can change the feasible 2D subspace to

$$
\operatorname{span}\left\{g_{k}\left(B_{k}+\alpha_{k} I\right)^{-1} g_{k}\right\},
$$

where $\alpha_{k} \in\left(-\lambda_{\min }\left(B_{k}\right),-2 \lambda_{\min }\left(B_{k}\right)\right)$.

