Online Convex Optimization and Mirror Descent

Yudong Chen

Reading:

- Chapter 21 of Duchi's notes
- Xinhua Zhang, short notes on mirror descent
- Elad Hazan, "Introduction to Online Convex Optimization"
- Section 4 of Bubeck's monograph
- Lectures 5-9 in Jiantao Jiao's course on convex optimization

1 Online Convex Optimization

The setup can be described as a two-player sequential game:

- Let $\mathcal{X} \subseteq \mathbb{R}^{d}$ be a convex feasible set (we call it the parameter space in this lecture).
- At each time t, player 1 (the learner) chooses some $x_{t} \in \mathcal{X}$.
- Player 2 (the adversary, or nature) then chooses a convex loss function $f_{t}: \mathcal{X} \rightarrow \mathbb{R}$.

Note that the learner commits to x_{t} before seeing f_{t}, whereas the adversary may adapt its choice of f_{t} to x_{1}, \ldots, x_{t}. The goal for the learner is to minimize the average regret, defined as

$$
\frac{1}{T} \sum_{t=1}^{T}\left(f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right)\right)
$$

where $x^{*}:=\operatorname{argmin}_{x \in \mathcal{X}} \sum_{t=1}^{T} f_{t}(x)$ is the best fixed decision in hindsight. In general, we want the average regret to go to zero as $T \rightarrow \infty$.

1.1 Examples

Here are some examples of problems that fall into the framework of online convex optimization.

1. Online support vector machine: At each time t, the learner picks a vector $x_{t} \in \mathbb{R}^{d}$. Then, a data point $\left(a_{t}, y_{t}\right) \in \mathbb{R}^{d} \times\{ \pm 1\}$ is revealed, and the learner incurs loss $f_{t}\left(x_{t}\right)$, where $f_{t}(x)=$ $\max \left\{1-y_{t}\left\langle x, a_{t}\right\rangle, 0\right\}$. (This loss function is called the hinge loss.)
2. Online logistic regression: Same setup, except now the loss function is $f_{t}(x)=\log \left(1+e^{-y_{t}\left\langle x, a_{t}\right\rangle}\right)$. (This is the logistic loss.)
3. Expert prediction/adversarial bandit: There are d experts/arms. At each time t, each expert makes a prediction (for example "I predict the stock market will go up tomorrow"). At each time t, the learner chooses a weight vector $x_{t}=\left(x_{t 1}, \ldots, x_{t d}\right)$, where

$$
x_{t j}=\text { weight for expert } j=\text { probability of pulling arm } j .
$$

The parameter space is $\mathcal{X}=\Delta_{d}:=\left\{x \in \mathbb{R}^{d}: \sum_{j} x_{j}=1, x_{j} \geq 0\right\}$, which is the probability simplex in \mathbb{R}^{d}. Then losses

$$
l_{t j}=\mathbb{I}\{\text { expert } j \text { is wrong at time } t\}=\text { loss of arm } j \text { at time } t
$$

are revealed for $j=1, \ldots, d$, and the learner incurs expected/average loss $f_{t}\left(x_{t}\right)=\left\langle x_{t}, l_{t}\right\rangle$. Note that $\nabla f_{t}\left(x_{t}\right)=l_{t}$.

2 Online Gradient Descent

Gradient descent extends naturally to an algorithm for online convex optimization. Online gradient descent computes, at each iteration $t+1$:

$$
\begin{aligned}
x_{t+1} & =P_{\mathcal{X}}\left(x_{t}-\alpha_{t} g_{t}\right) \\
& =\underset{x \in \mathcal{X}}{\operatorname{argmin}}\left\{\left\langle g_{t}, x\right\rangle+\frac{1}{2 \alpha_{t}}\left\|x-x_{t}\right\|_{2}^{2}\right\} .
\end{aligned}
$$

where α_{t} is the step size and $g_{t}=\nabla f_{t}\left(x_{t}\right)$. (This is can be generalized to the setting where f_{t} is non-differentiable, in which case $g_{t} \in \partial f_{t}\left(x_{t}\right)$ is a subgradient of f_{t} at x_{t}.)

3 Bregman Divergence

We will next see how to extend gradient descent to a more general algorithm. First, we need to introduce the notion of Bregman divergence. Let $\psi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a differentiable convex function.
Definition 1 (Bregman Divergence). The Bregman divergence associated with ψ is a function $B_{\psi}: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ defined by

$$
B_{\psi}(x, y):=\psi(x)-\psi(y)-\langle\nabla \psi(y), x-y\rangle
$$

Remark 1. By the convexity of ψ, the Bregman divergence B_{ψ} is always non-negative. One may loosely think of $B_{\psi}(x, y)$ as a measure of "distance" between x and y; however, the Bregman divergence is not necessarily symmetric or need not satisfy the triangle inequality.

3.1 Examples

1. Euclidean distance. Let $\psi(x)=\frac{1}{2}\|x\|_{2}^{2}$. Then $B_{\psi}(x, y)=\frac{1}{2}\|x-y\|_{2}^{2}$.
2. Mahalanobis distance. Let $\psi(x)=\frac{1}{2} x^{\top} A x=: \frac{1}{2}\|x\|_{A}^{2}$, where $A \succcurlyeq 0$.

Then $B_{\psi}(x, y)=\frac{1}{2}(x-y)^{\top} A(x-y)=\frac{1}{2}\|x-y\|_{A}^{2}$.
3. KL-divergence. Let $\psi(x)=\sum_{j=1}^{d} x_{j} \log x_{j}$ be the negative entropy. Note that ψ is convex on \mathbb{R}_{+}^{d}.
Then $B_{\psi}(x, y)=\sum_{j=1}^{d} x_{j} \log \frac{x_{j}}{y_{j}}=D_{\mathrm{KL}}(x, y)$ for all $x, y \in \Delta_{d}$, where $D_{\mathrm{KL}}(\cdot, \cdot)$ is the KullbackLeibler divergence, and Δ_{d} denotes the probability simplex in d-dimension, .

4 Online Mirror Descent (OMD)

This is a generalization of gradient descent using Bregman divergences. At iteration t :

$$
\begin{equation*}
x_{t+1}=\underset{x \in \mathcal{X}}{\operatorname{argmin}}\left\{\left\langle g_{t}, x\right\rangle+\frac{1}{\alpha_{t}} B_{\psi}\left(x, x_{t}\right)\right\} \tag{1}
\end{equation*}
$$

Remark 2. $\left\langle g_{t}, x\right\rangle+\frac{1}{\alpha_{t}} B_{\psi}\left(x, x_{t}\right)$ is convex in x. Hence this is a convex optimization problem.

4.1 Special cases of OMD

Gradient descent $\quad \psi(x)=\frac{1}{2}\|x\|_{2}^{2}$
Exponentiated gradient descent This is online mirror descent with $\mathcal{X}=\Delta_{d}, \psi(x)=\sum_{j} x_{j} \log x_{j}$, and $B_{\psi}(x, y)=D_{\mathrm{KL}}(x, y)$. At iteration t :

$$
x_{t+1}=\underset{x \in \mathcal{X}}{\operatorname{argmin}}\left\{\left\langle g_{t}, x\right\rangle+\frac{1}{\alpha_{t}} D_{\mathrm{KL}}\left(x, x_{t}\right)\right\} .
$$

To explicit calculate x_{t+1}, we write the Lagrangian:

$$
L(x, \lambda, \tau)=\left\langle g_{t}, x\right\rangle+\frac{1}{\alpha} \sum_{i=1}^{d} x_{i} \log \frac{x_{i}}{x_{t, i}}-\langle\lambda, x\rangle+\tau(\langle\mathbb{I}, x\rangle-1) .
$$

Here, $\lambda \in \mathbb{R}^{d}$ is the multiplier for the element-wise constraint $x \geq 0$, and $\tau \in \mathbb{R}$ is the multiplier for the constraint $\langle\mathbb{I}, x\rangle=1$. Taking $\frac{\partial}{\partial x} L(x, \lambda, \tau)=0$ gives

$$
x_{t+1, i}=x_{t, i} \exp \left(-\alpha g_{t, i}+\lambda_{i} \alpha-\tau \alpha-1\right)>0 .
$$

Hence the constraint $x \geq 0$ is inactive, which implies $\lambda=\overrightarrow{0}$. We choose τ to normalize x, giving

$$
\begin{align*}
x_{t+1, i} & =\frac{x_{t, i} \exp \left(-\alpha g_{t, i}\right)}{Z_{t}} \quad \text { where } Z_{t}=\sum_{j=1}^{d} x_{t, j} \exp \left(-\alpha g_{t, j}\right) \tag{2}\\
& =\frac{\exp \left(-\sum_{k=1}^{t} \alpha_{k} g_{k, i}\right)}{\text { normalization-factor }} . \tag{3}
\end{align*}
$$

We sometimes write this as

$$
\begin{equation*}
x_{t+1}=\operatorname{soft}-\operatorname{argmin}\left\{\sum_{k=1}^{t} \alpha_{k} g_{k, i}, i=1, \ldots, d\right\} \tag{4}
\end{equation*}
$$

Remark 3. In the context of the expert problem, $g_{k, i}$ is the loss of expert i at time k. Hence, $\sum_{k=1}^{t} g_{k, i}$ is the total loss of expert i up to time t. Hence exponentiated gradient descent favors experts with low historical loss, but still assigns positive weight to every expert. This algorithm can thus be interpreted as a smoothed version of "follow the leader", where the weights are updated in an multiplicative fashion. (Variants of) exponentiated gradient descent is also known as multiplicative weight update (MWU), follow-the-regularized-leader (FTRL), fictitious play (FP), Hedge algorithm, and entropic mirror descent.

5 Analysis of Online Mirror Descent

We recall some definitions.
Definition 2 (Strong convexity). ψ is 1 -strongly convex with respect to $\|\cdot\|$ if, for all y, x :

$$
\psi(x)-\psi(y)-\langle g, x-y\rangle \geq \frac{1}{2}\|x-y\|^{2}, \quad \text { for all } g \in \partial \psi(y) .
$$

This is equivalent to $B_{\psi}(x, y) \geq \frac{1}{2}\|x-y\|^{2}$ by definition of Bregman divergence.
Example 1. Let $\psi(x)=\sum_{j} x_{j} \log x_{j}$ be negative entropy. Then by Pinsker's inequality, we have

$$
\begin{equation*}
B_{\psi}(x, y)=D_{\text {KL }}(x, y) \geq \frac{1}{2}\|x-y\|_{1}^{2} . \tag{5}
\end{equation*}
$$

In other words, the negative entropy is 1 -strongly convex with respect to the ℓ_{1} norm.
Definition 3 (Dual norm). The dual norm of $\|\cdot\|$ is the norm $\|\cdot\|_{*}$ defined by

$$
\|y\|_{*}=\sup _{x:\|x\| \leq 1}\langle x, y\rangle .
$$

Example 2. The dual norm of $\|\cdot\|_{2}$ is $\|\cdot\|_{2}$. The dual norm of $\|\cdot\|_{\infty}$ is $\|\cdot\|_{1}$. The dual norm of $\|\cdot\|_{\text {nuc }}$ (nuclear norm) is $\|\cdot\|_{\text {op }}$ (operator norm).

Theorem 1. Suppose that ψ is 1-strongly convex with respect to $\|\cdot\|$ with dual norm $\|\cdot\|_{*}$. Then online mirror descent (1) with constant step size $\alpha_{t} \equiv \alpha$ satisfies the regret bound

$$
\frac{1}{T} \sum_{t=1}^{T}\left[f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right)\right] \leq \frac{1}{\alpha T} B_{\psi}\left(x^{*}, x_{1}\right)+\frac{\alpha}{2 T} \sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2}
$$

Proof. Recall that $x_{t+1}=\operatorname{argmin}_{x \in \mathcal{X}}\left\{\left\langle g_{t}, x\right\rangle+\frac{1}{\alpha} B_{\psi}\left(x, x_{t}\right)\right\}$. By the optimality condition for constrained optimization (negative gradient lies in the normal cone), we have

$$
\begin{aligned}
0 & \leq\left\langle g_{t}+\left.\frac{1}{\alpha} \frac{\partial}{\partial x} B_{\psi}\left(x, x_{t}\right)\right|_{x=x_{t+1}}, x^{*}-x_{t+1}\right\rangle \\
& =\left\langle g_{t}+\frac{1}{\alpha}\left(\nabla \psi\left(x_{t+1}\right)-\nabla \psi\left(x_{t}\right)\right), x^{*}-x_{t+1}\right\rangle
\end{aligned}
$$

Therefore, we have

$$
\begin{array}{rlrl}
f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right) & \leq\left\langle g_{t}, x_{t}-x^{*}\right\rangle & & \text { convexity of } f_{t} \\
& =\left\langle g_{t}, x_{t+1}-x^{*}\right\rangle+\left\langle g_{t}, x_{t}-x_{t+1}\right\rangle & & \\
& \leq \frac{1}{\alpha}\left\langle\nabla \psi\left(x_{t+1}\right)-\nabla \psi\left(x_{t}\right), x^{*}-x_{t+1}\right\rangle+\left\langle g_{t}, x_{t}-x_{t+1}\right\rangle & \text { last display equation } \\
& =\frac{1}{\alpha}\left[B_{\psi}\left(x^{*}, x_{t}\right)-B_{\psi}\left(x^{*}, x_{t+1}\right)-B_{\psi}\left(x_{t+1}, x_{t}\right)\right]+\left\langle g_{t}, x_{t}-x_{t+1}\right\rangle &
\end{array}
$$

where the last step follows from direct calculation using definition and is sometimes known as the "three-point identity" for Bregman divergence (HW2 Q3.3). Let us sum over $t=1, \ldots, T$. The sum telescopes and simplifies to

$$
\begin{aligned}
\sum_{t=1}^{T}\left(f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right)\right) & \leq \frac{1}{\alpha}\left[B_{\psi}\left(x^{*}, x_{1}\right)-B_{\psi}\left(x^{*}, x_{T+1}\right)\right]+\sum_{t=1}^{T}\left[-\frac{1}{\alpha} B_{\psi}\left(x_{t+1}, x_{t}\right)+\left\langle g_{t}, x_{t}-x_{t+1}\right\rangle\right] \\
& \leq \frac{1}{\alpha} B_{\psi}\left(x^{*}, x_{1}\right)+\sum_{t=1}^{T}\left[-\frac{1}{\alpha} B_{\psi}\left(x_{t+1}, x_{t}\right)+\left\langle g_{t}, x_{t}-x_{t+1}\right\rangle\right]
\end{aligned}
$$

To control the last RHS term, we observe that

$$
\begin{aligned}
\left\langle g_{t}, x_{t}-x_{t+1}\right\rangle & \leq\left\|g_{t}\right\|_{*}\left\|x_{t}-x_{t+1}\right\| & & \text { definition of dual norm } \\
& \leq \frac{\alpha}{2}\left\|g_{t}\right\|^{2}+\frac{1}{2 \alpha}\left\|x_{t}-x_{t+1}\right\|^{2} & & a b \leq \frac{1}{2}\left(a^{2}+b^{2}\right) \\
& \leq \frac{\alpha}{2}\left\|g_{t}\right\|_{*}^{2}+\frac{1}{\alpha} B_{\psi}\left(x_{t+1}, x_{t}\right) & & \text { strong convexity of } \psi .
\end{aligned}
$$

Combining pieces, we obtain

$$
\sum_{t=1}^{T}\left(f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right)\right) \leq \frac{1}{\alpha} B_{\psi}\left(x^{*}, x_{1}\right)+\frac{\alpha}{2} \sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2} .
$$

Dividing both sides by $\frac{1}{T}$ gives the desired regret bound.

6 Applications

6.1 Online (sub)-gradient descent

Let $\psi(x)=\frac{1}{2}\|x\|_{2}^{2}$. Then ψ is 1 -strongly convex with respect to $\|\cdot\|_{2}$, and the dual norm is $\|\cdot\|_{2}$. Suppose each f_{t} is L-Lipschitz, which implies $\left\|g_{t}\right\|_{2} \leq M$. Then the regret bound is

$$
\frac{1}{T} \sum_{t=1}^{T}\left(f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right)\right) \leq \frac{1}{2 \alpha T}\left\|x^{*}-x_{1}\right\|_{2}^{2}+\frac{\alpha}{2 T} T \cdot M^{2} .
$$

Choosing $\alpha=\frac{\left\|x^{*}-x_{1}\right\|_{2}}{M \sqrt{T}}$ to minimize the RHS gives

$$
\frac{1}{T} \sum_{t=1}^{T}\left(f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right)\right) \leq \frac{\left\|x^{*}-x_{1}\right\|_{2} M}{\sqrt{T}} .
$$

Remark 4. The above bound implies an $O\left(\frac{1}{\sqrt{T}}\right)$ convergence rate for the offline setting where all $f_{t} \equiv f$. In particular, letting $\bar{x}=\frac{1}{T} \sum_{t=1}^{T} x_{t}$, we have

$$
f(\bar{x})-f\left(x^{*}\right) \leq \frac{1}{T} \sum_{t=1}^{T}\left[f\left(x_{t}\right)-f\left(x^{*}\right)\right] \leq \frac{\left\|x^{*}-x_{1}\right\|_{2} M}{\sqrt{T}}
$$

where the first step above is by Jensen's inequality. This recovers the result from Lecture 17 on subgradient descent.

6.2 Exponentiated gradient descent

Let $\mathcal{X}=\Delta_{d}$, and $\psi(x)=\sum_{j} x_{j} \log x_{j}$ be the negative entropy. Then ψ is 1 -strongly convex with respect to $\|\cdot\|_{1}$, with dual norm $\|\cdot\|_{\infty}$. Then the regret bound is

$$
\frac{1}{T} \sum_{t=1}^{T}\left(f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right)\right) \leq \frac{1}{\alpha T} D_{\mathrm{KL}}\left(x^{*}, x_{1}\right)+\frac{\alpha}{2 T} \sum_{t=1}^{T}\left\|g_{t}\right\|_{\infty}^{2} .
$$

If in addition we take the initial iterate $x_{1}=\left(\frac{1}{d}, \ldots, \frac{1}{d}\right)$ to be the uniform distribution, then one can verify that $D_{\mathrm{KL}}\left(x^{*}, x_{1}\right) \leq \log d$. Also, set $\alpha=\sqrt{\frac{\log d}{2 T \max _{t}\| \|_{t} \|_{\infty}^{2}}}$. Then the average regret is

$$
\begin{equation*}
\frac{1}{T} \sum_{t=1}^{T}\left(f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right)\right) \leq \sqrt{\frac{\log d \cdot \max _{t}\left\|g_{t}\right\|_{\infty}^{2}}{T}} . \tag{6}
\end{equation*}
$$

Remark 5. Compared to online gradient descent, the dependence on the gradients g_{t} is max ${ }_{t}\left\|g_{t}\right\|_{\infty}$ instead of $\max _{t}\left\|g_{t}\right\|_{2}$. Thus exponentiated gradient descent can do better than gradient descent when the gradients g_{t} are small in magnitude and not sparse.

6.3 Expert problem

Recall that $l_{t j}$ is the loss of expert j at time t, and that $g_{t}=l_{t} \in\{0,1\}^{d}$. Thus $\left\|g_{t}\right\|_{\infty} \leq 1$. Plugging this into the bound for exponentiated gradient descent gives

$$
\frac{1}{T} \sum_{t=1}^{T}\left(f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right)\right) \leq \sqrt{\frac{\log d}{T}}
$$

Remark 6. This regret bound is optimal for the expert problem. In comparison, gradient descent would get $\sqrt{\frac{d}{T}}$ regret, which has an exponentially larger dependence on the dimension d.

7 Extensions

1. We chose our step size α to be proportional to $\frac{1}{\sqrt{T}}$. This requires the time horizon to be known to the algorithm. If T is not known, one can use a varying step size $\alpha_{t}=\frac{1}{\sqrt{t}}$ and prove essentially the same guarantees (under a slightly stronger boundedness assumption; see Duchi's notes.)
2. Improved bounds. If more is known about the loss function f_{t}, then better regret bounds (in the online setting) and convergence rates (in the offline setting) can be obtained.

- f_{t} is smooth (gradient is Lipschitz): We have an improvement $\frac{1}{\sqrt{T}} \rightarrow \frac{1}{T}$ in average regret. This can be further improved to $\frac{1}{T^{2}}$ using ideas similar to Nesterov's acceleration.
- f_{t} is strongly convex: We have an improvement $\frac{1}{\sqrt{T}} \rightarrow \frac{\log T}{T}$ in average regret.

See Xinhua Zhang's notes for details.
3. So far, we assumed that we observe the losses of all the experts/arms, even those we did not choose/pull. This is the full information setting. Next week, we will look at the "bandit information" setting, where we only observe the loss of the expert/arm that we choose/pull, that is, we only see one entry of $\nabla f_{t}=g_{t}=l_{t}$.

8 Why is it called mirror descent?

The online mirror descent update (1) can be written equivalently as

$$
\begin{array}{ll}
\text { compute } & y_{t+1} \in \mathbb{R}^{d} \quad \text { such that } \nabla \psi\left(y_{t+1}\right)=\nabla \psi\left(x_{t}\right)-\alpha_{t} g_{t} \\
\text { compute } & x_{t+1} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} B_{\psi}\left(x, y_{t+1}\right) . \tag{7b}
\end{array}
$$

To see the equivalence, we continue from (7b) to get

$$
\begin{aligned}
x_{t+1} & =\underset{x \in \mathcal{X}}{\operatorname{argmin}}\left\{\psi(x)-\psi\left(y_{t+1}\right)-\left\langle\nabla \psi\left(y_{t+1}\right), x-y_{t+1}\right\rangle\right\} & & \\
& =\underset{x \in \mathcal{X}}{\operatorname{argmin}}\left\{\psi(x)-\psi\left(y_{t+1}\right)-\left\langle\nabla \psi\left(x_{t}\right)-\alpha_{t} g_{t}, x-y_{t+1}\right\rangle\right\} & & \text { by (7a) } \\
& =\underset{x \in \mathcal{X}}{\operatorname{argmin}}\left\{\alpha_{t}\left\langle g_{t}, x\right\rangle+\psi(x)-\left\langle\nabla \psi\left(x_{t}\right), x\right\rangle\right\} & & \\
& =\underset{x \in \mathcal{X}}{\operatorname{argmin}}\left\{\alpha_{t}\left\langle g_{t}, x\right\rangle+B_{\psi}\left(x, x_{t}\right)\right\}=(1) . & &
\end{aligned}
$$

One can view $\nabla \psi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ as a mapping from the primal space to the dual/mirror space, and $(\nabla \psi)^{-1}$ is the inverse mapping from the mirror space to the primal space. Therefore, in (7a), we first map x_{t} to $\nabla \psi\left(x_{t}\right)$, then perform an gradient descent step $\nabla \psi\left(x_{t}\right)-\alpha_{t} g_{t}$ in this mirror space, and finally map back to the primal space to obtain $y_{t+1}=(\nabla \psi)^{-1}\left(\nabla \psi\left(x_{t}\right)-\alpha_{t} g_{t}\right)$. The update in (7 b) can be viewed as the projection of y_{t+1} to \mathcal{X} with respect to the Bregman divergence B_{ψ}.

For an illustration see the following plot from Bubeck.

Figure 4.1: Illustration of mirror descent.

9 Lazy mirror descent

The above perspective suggests a somewhat more efficient variant of mirror descent, where we use y_{t} instead of x_{t} on the RHS of (7a). This is called lazy mirror descent, as given below:

$$
\begin{array}{ll}
\text { compute } & y_{t+1} \in \mathbb{R}^{d} \quad \text { such that } \nabla \psi\left(y_{t+1}\right)=\nabla \psi\left(y_{t}\right)-\alpha_{t} g_{t} \\
\text { compute } & x_{t+1} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} B_{\psi}\left(x, y_{t+1}\right) . \tag{8b}
\end{array}
$$

Note that the step (8a) is equivalent to

$$
\begin{align*}
& \theta_{t+1}=\nabla \psi\left(y_{1}\right)-\sum_{t=1}^{\infty} \alpha_{t} g_{t}, \tag{9}\\
& y_{t+1} \in(\nabla \psi)^{-1}\left(\theta_{t+1}\right) \tag{10}
\end{align*}
$$

Here we are averaging the g_{t} 's in the dual space. Therefore, lazy mirror descent is also known as (Nesterov's) Dual Averaging.

In the original mirror descent (7), we go back and forth between the primal and mirror space: $x_{t} \rightarrow \nabla \psi\left(x_{t}\right) \rightarrow(\nabla \psi)^{-1}\left(\nabla \psi\left(x_{t}\right)-\alpha_{t} g_{t}\right)$. In lazy mirror descent, the step (8b) or (9) is done purely in the mirror space; only when asked to output x_{t+1}, we map the dual point θ_{t+1} back to the primal space. One may notice that if $g_{t}=\nabla f_{t}\left(x_{t}\right)$ is the gradient at x_{t}, then one needs to compute the primal points y_{t} and x_{t} in every iteration. However, this only involves the backward $\operatorname{map} \nabla^{-1} \psi$, so we do not need to compute the forward map $\nabla \psi$ as in the original mirror descent. This can be advantageous in the distributed setting, or when $\nabla^{-1} \psi$ is easier to compute than $\nabla \psi$.

In the special case of $\mathcal{X}=\Delta_{d}$ and $\psi(x)=\sum_{j} x_{j} \log x_{j}$ (i.e., exponentiated gradient descent), mirror descent and lazy mirror descent are equivalent, corresponding to the updates (2) and (3) respectively.

9.1 Regret bound

Lazy mirror descent enjoys a similar convergence guarantee as mirror descent. Recall that each f_{t} is convex and $g_{t}=\nabla f_{t}\left(x_{t}\right)$.

Theorem 2. Suppose that ψ is 1 -strongly convex with respect to $\|\cdot\|$ with dual norm $\|\cdot\|_{*}$. Consider the lazy mirror descent (8) with constant step size $\alpha_{t} \equiv \alpha$ and initial point $x_{1}=y_{1}$ satisfying $\nabla \psi\left(y_{1}\right)=0$. We have the regret bound

$$
\frac{1}{T} \sum_{t=1}^{T}\left[f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right)\right] \leq \frac{1}{\alpha T}\left(\psi\left(x^{*}\right)-\psi\left(x_{1}\right)\right)+\frac{2 \alpha}{T} \sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2} .
$$

Proof. For each t define the potential function $L_{t}(x):=\alpha \sum_{s=1}^{t-1}\left\langle g_{s}, x\right\rangle+\psi(x)$, which is 1-strongly convex since ψ is. From (9) and $\nabla \psi\left(y_{1}\right)=0$, we have

$$
x_{t} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} B_{\psi}\left(x, y_{t}\right)=\underset{x \in \mathcal{X}}{\operatorname{argmin}} \psi(x)-\left\langle\nabla \psi\left(y_{t}\right), x\right\rangle=\underset{x \in \mathcal{X}}{\operatorname{argmin}} L_{t}(x) .
$$

By strong convexity we have

$$
L_{t+1}\left(x_{t+1}\right)-L_{t+1}\left(x_{t}\right) \leq\left\langle\nabla L_{t+1}\left(x_{t+1}\right), x_{t+1}-x_{t}\right\rangle-\frac{1}{2}\left\|x_{t+1}-x_{t}\right\|^{2} \leq-\frac{1}{2}\left\|x_{t+1}-x_{t}\right\|^{2},
$$

where the last step follows from the first-order optimality condition for x_{t+1} w.r.t. L_{t+1}. We also have

$$
L_{t+1}\left(x_{t+1}\right)-L_{t+1}\left(x_{t}\right)=L_{t}\left(x_{t+1}\right)-L_{t}\left(x_{t}\right)+\alpha\left\langle g_{t}, x_{t+1}-x_{t}\right\rangle \geq \alpha\left\langle g_{t}, x_{t+1}-x_{t}\right\rangle
$$

by optimality of x_{t} w.r.t. L_{t}. Combining the last two inequalities, we get

$$
\frac{1}{2}\left\|x_{t+1}-x_{t}\right\|^{2} \leq-\alpha\left\langle g_{t}, x_{t+1}-x_{t}\right\rangle \leq \alpha\left\|g_{t}\right\|_{*}\left\|x_{t+1}-x_{t}\right\|
$$

This implies that $\left\|x_{t+1}-x_{t}\right\| \leq 2 \alpha\left\|g_{t}\right\|_{*}$ and thus

$$
\begin{equation*}
\left\langle g_{t}, x_{t}-x_{t+1}\right\rangle \leq\left\|g_{t}\right\|_{*}\left\|x_{t+1}-x_{t}\right\| \leq 2 \alpha\left\|g_{t}\right\|_{*}^{2} . \tag{11}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\sum_{t=1}^{T-1}\left\langle g_{t}, x_{t+1}\right\rangle+\frac{\psi\left(x_{1}\right)}{\alpha} \leq \sum_{t=1}^{T-1}\left\langle g_{t}, x\right\rangle+\frac{\psi(x)}{\alpha}, \quad \forall x \in \mathcal{X} . \tag{12}
\end{equation*}
$$

We prove by induction on T. For $T=1$, the inequality (12) becomes $\psi\left(x_{1}\right) \leq \psi\left(x^{*}\right)$, which holds because x_{1} satisfies $\nabla \psi\left(x_{1}\right)=0$ and is thus a minimizer of ψ. Now assume that the bound (12) holds for some T. Setting $x=x_{T+1}$ we get

$$
\sum_{t=1}^{T-1}\left\langle g_{t}, x_{t+1}\right\rangle+\frac{\psi\left(x_{1}\right)}{\alpha} \leq \sum_{t=1}^{T-1}\left\langle g_{t}, x_{T+1}\right\rangle+\frac{\psi\left(x_{T+1}\right)}{\alpha}
$$

Hence

$$
\sum_{t=1}^{T}\left\langle g_{t}, x_{t+1}\right\rangle+\frac{\psi\left(x_{1}\right)}{\alpha} \leq \underbrace{\left\langle g_{T}, x_{T+1}\right\rangle+\sum_{t=1}^{T-1}\left\langle g_{t}, x_{T+1}\right\rangle+\frac{\psi\left(x_{T+1}\right)}{\alpha}}_{L_{T+1}\left(x_{T+1}\right)} \leq \underbrace{\sum_{t=1}^{T}\left\langle g_{t}, x\right\rangle+\frac{\psi(x)}{\alpha}}_{L_{T+1}(x)}
$$

where the last step holds since $x_{T+1} \in \operatorname{argmin}_{x \in \mathcal{X}} L_{T+1}(x)$. This proves (12) for $T+1$.
Combining pieces, we obtain

$$
\begin{array}{rlr}
\sum_{t=1}^{T}\left[f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right)\right] & \leq \sum_{t=1}^{T-1}\left\langle g_{t}, x_{t}-x^{*}\right\rangle & f_{t} \text { is convex } \\
& =\sum_{t=1}^{T-1}\left\langle g_{t}, x_{t}-x_{t+1}\right\rangle+\sum_{t=1}^{T-1}\left\langle g_{t}, x_{t+1}-x^{*}\right\rangle & \quad \text { (11), and (12) with } \mathrm{x}=x^{*}, \\
& \leq \sum_{t=1}^{T-1} 2 \alpha\left\|g_{t}\right\|_{*}^{2}+\frac{\psi\left(x^{*}\right)-\psi\left(x_{1}\right)}{\alpha} . &
\end{array}
$$

Dividing both sides by T proves Theorem 2.

