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Online Convex Optimization and Mirror Descent

Yudong Chen

Reading:

• Chapter 21 of Duchi’s notes

• Xinhua Zhang, short notes on mirror descent

• Elad Hazan, “Introduction to Online Convex Optimization"

• Section 4 of Bubeck’s monograph

• Lectures 5–9 in Jiantao Jiao’s course on convex optimization

1 Online Convex Optimization

The setup can be described as a two-player sequential game:

• Let X ⊆ Rd be a convex feasible set (we call it the parameter space in this lecture).

• At each time t, player 1 (the learner) chooses some xt ∈ X .

• Player 2 (the adversary, or nature) then chooses a convex loss function ft : X → R.

Note that the learner commits to xt before seeing ft, whereas the adversary may adapt its choice
of ft to x1, . . . , xt. The goal for the learner is to minimize the average regret, defined as

1
T

T

∑
t=1

( ft(xt)− ft(x∗)) ,

where x∗ := argminx∈X ∑T
t=1 ft(x) is the best fixed decision in hindsight. In general, we want the

average regret to go to zero as T → ∞.

1.1 Examples

Here are some examples of problems that fall into the framework of online convex optimization.

1. Online support vector machine: At each time t, the learner picks a vector xt ∈ Rd. Then, a
data point (at, yt) ∈ Rd × {±1} is revealed, and the learner incurs loss ft(xt), where ft(x) =
max{1− yt 〈x, at〉 , 0}. (This loss function is called the hinge loss.)

2. Online logistic regression: Same setup, except now the loss function is ft(x) = log
(

1 + e−yt〈x,at〉
)

.
(This is the logistic loss.)
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3. Expert prediction/adversarial bandit: There are d experts/arms. At each time t, each expert
makes a prediction (for example “I predict the stock market will go up tomorrow”). At each
time t, the learner chooses a weight vector xt = (xt1, . . . , xtd), where

xtj = weight for expert j = probability of pulling arm j.

The parameter space is X = ∆d := {x ∈ Rd : ∑j xj = 1, xj ≥ 0}, which is the probability
simplex in Rd. Then losses

ltj = I{expert j is wrong at time t} = loss of arm j at time t

are revealed for j = 1, . . . , d, and the learner incurs expected/average loss ft(xt) = 〈xt, lt〉.
Note that ∇ ft(xt) = lt.

2 Online Gradient Descent

Gradient descent extends naturally to an algorithm for online convex optimization. Online gradi-
ent descent computes, at each iteration t + 1:

xt+1 = PX (xt − αtgt)

= argmin
x∈X

{
〈gt, x〉+ 1

2αt
‖x− xt‖2

2

}
.

where αt is the step size and gt = ∇ ft(xt). (This is can be generalized to the setting where ft is
non-differentiable, in which case gt ∈ ∂ ft(xt) is a subgradient of ft at xt.)

3 Bregman Divergence

We will next see how to extend gradient descent to a more general algorithm. First, we need to
introduce the notion of Bregman divergence. Let ψ : Rd → R be a differentiable convex function.

Definition 1 (Bregman Divergence). The Bregman divergence associated with ψ is a function
Bψ : Rd ×Rd → R defined by

Bψ(x, y) := ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉

Remark 1. By the convexity of ψ, the Bregman divergence Bψ is always non-negative. One may
loosely think of Bψ(x, y) as a measure of “distance” between x and y; however, the Bregman di-
vergence is not necessarily symmetric or need not satisfy the triangle inequality.

3.1 Examples

1. Euclidean distance. Let ψ(x) = 1
2 ‖x‖

2
2. Then Bψ(x, y) = 1

2 ‖x− y‖2
2.

2. Mahalanobis distance. Let ψ(x) = 1
2 x>Ax =: 1

2 ‖x‖
2
A, where A < 0.

Then Bψ(x, y) = 1
2 (x− y)>A(x− y) = 1

2 ‖x− y‖2
A.

3. KL-divergence. Let ψ(x) = ∑d
j=1 xj log xj be the negative entropy. Note that ψ is convex on

Rd
+.

Then Bψ(x, y) = ∑d
j=1 xj log xj

yj
= DKL (x, y) for all x, y ∈ ∆d, where DKL (·, ·) is the Kullback-

Leibler divergence, and ∆d denotes the probability simplex in d-dimension, .
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4 Online Mirror Descent (OMD)

This is a generalization of gradient descent using Bregman divergences. At iteration t:

xt+1 = argmin
x∈X

{
〈gt, x〉+ 1

αt
Bψ(x, xt)

}
(1)

Remark 2. 〈gt, x〉+ 1
αt

Bψ(x, xt) is convex in x. Hence this is a convex optimization problem.

4.1 Special cases of OMD

Gradient descent ψ(x) = 1
2 ‖x‖

2
2

Exponentiated gradient descent This is online mirror descent with X = ∆d, ψ(x) = ∑j xj log xj,
and Bψ(x, y) = DKL (x, y). At iteration t:

xt+1 = argmin
x∈X

{
〈gt, x〉+ 1

αt
DKL (x, xt)

}
.

To explicit calculate xt+1, we write the Lagrangian:

L(x, λ, τ) = 〈gt, x〉+ 1
α

d

∑
i=1

xi log
xi

xt,i
− 〈λ, x〉+ τ (〈I, x〉 − 1) .

Here, λ ∈ Rd is the multiplier for the element-wise constraint x ≥ 0, and τ ∈ R is the multiplier
for the constraint 〈I, x〉 = 1. Taking ∂

∂x L(x, λ, τ) = 0 gives

xt+1,i = xt,i exp (−αgt,i + λiα− τα− 1) > 0.

Hence the constraint x ≥ 0 is inactive, which implies λ =~0. We choose τ to normalize x, giving

xt+1,i =
xt,i exp(−αgt,i)

Zt
where Zt =

d

∑
j=1

xt,j exp
(
−αgt,j

)
(2)

=
exp

(
−∑t

k=1 αkgk,i
)

normalization-factor
. (3)

We sometimes write this as

xt+1 = soft-argmin

{
t

∑
k=1

αkgk,i, i = 1, . . . , d

}
. (4)

Remark 3. In the context of the expert problem, gk,i is the loss of expert i at time k. Hence, ∑t
k=1 gk,i

is the total loss of expert i up to time t. Hence exponentiated gradient descent favors experts with
low historical loss, but still assigns positive weight to every expert. This algorithm can thus be
interpreted as a smoothed version of “follow the leader”, where the weights are updated in an
multiplicative fashion. (Variants of) exponentiated gradient descent is also known as multiplica-
tive weight update (MWU), follow-the-regularized-leader (FTRL), fictitious play (FP), Hedge
algorithm, and entropic mirror descent.
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5 Analysis of Online Mirror Descent

We recall some definitions.

Definition 2 (Strong convexity). ψ is 1-strongly convex with respect to ‖·‖ if , for all y, x:

ψ(x)− ψ(y)− 〈g, x− y〉 ≥ 1
2
‖x− y‖2 , for all g ∈ ∂ψ(y).

This is equivalent to Bψ(x, y) ≥ 1
2 ‖x− y‖2 by definition of Bregman divergence.

Example 1. Let ψ(x) = ∑j xj log xj be negative entropy. Then by Pinsker’s inequality, we have

Bψ(x, y) = DKL (x, y) ≥ 1
2
‖x− y‖2

1 . (5)

In other words, the negative entropy is 1-strongly convex with respect to the `1 norm.

Definition 3 (Dual norm). The dual norm of ‖·‖ is the norm ‖·‖∗ defined by

‖y‖∗ = sup
x:‖x‖≤1

〈x, y〉 .

Example 2. The dual norm of ‖·‖2 is ‖·‖2. The dual norm of ‖·‖∞ is ‖·‖1. The dual norm of ‖·‖nuc
(nuclear norm) is ‖·‖op (operator norm).

Theorem 1. Suppose that ψ is 1-strongly convex with respect to ‖·‖ with dual norm ‖·‖∗. Then online
mirror descent (1) with constant step size αt ≡ α satisfies the regret bound

1
T

T

∑
t=1

[ ft(xt)− ft(x∗)] ≤ 1
αT

Bψ(x∗, x1) +
α

2T

T

∑
t=1
‖gt‖2

∗ .

Proof. Recall that xt+1 = argminx∈X
{
〈gt, x〉+ 1

α Bψ(x, xt)
}

. By the optimality condition for con-
strained optimization (negative gradient lies in the normal cone), we have

0 ≤
〈

gt +
1
α

∂

∂x
Bψ(x, xt)

∣∣∣∣
x=xt+1

, x∗ − xt+1

〉

=

〈
gt +

1
α
(∇ψ(xt+1)−∇ψ(xt)) , x∗ − xt+1

〉
.

Therefore, we have

ft(xt)− ft(x∗) ≤ 〈gt, xt − x∗〉 convexity of ft

= 〈gt, xt+1 − x∗〉+ 〈gt, xt − xt+1〉

≤ 1
α
〈∇ψ(xt+1)−∇ψ(xt), x∗ − xt+1〉+ 〈gt, xt − xt+1〉 last display equation

=
1
α

[
Bψ(x∗, xt)− Bψ(x∗, xt+1)− Bψ(xt+1, xt)

]
+ 〈gt, xt − xt+1〉 ,
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where the last step follows from direct calculation using definition and is sometimes known as
the “three-point identity” for Bregman divergence (HW2 Q3.3). Let us sum over t = 1, . . . , T. The
sum telescopes and simplifies to

T

∑
t=1

( ft(xt)− ft(x∗)) ≤ 1
α

[
Bψ(x∗, x1)− Bψ(x∗, xT+1)

]
+

T

∑
t=1

[
−1

α
Bψ(xt+1, xt) + 〈gt, xt − xt+1〉

]
≤ 1

α
Bψ(x∗, x1) +

T

∑
t=1

[
−1

α
Bψ(xt+1, xt) + 〈gt, xt − xt+1〉

]
To control the last RHS term, we observe that

〈gt, xt − xt+1〉 ≤ ‖gt‖∗ ‖xt − xt+1‖ definition of dual norm

≤ α

2
‖gt‖2 +

1
2α
‖xt − xt+1‖2 ab ≤ 1

2
(a2 + b2)

≤ α

2
‖gt‖2

∗ +
1
α

Bψ(xt+1, xt) strong convexity of ψ.

Combining pieces, we obtain

T

∑
t=1

( ft(xt)− ft(x∗)) ≤ 1
α

Bψ(x∗, x1) +
α

2

T

∑
t=1
‖gt‖2

∗ .

Dividing both sides by 1
T gives the desired regret bound.

6 Applications

6.1 Online (sub)-gradient descent

Let ψ(x) = 1
2 ‖x‖

2
2. Then ψ is 1-strongly convex with respect to ‖·‖2, and the dual norm is ‖·‖2.

Suppose each ft is L-Lipschitz, which implies ‖gt‖2 ≤ M. Then the regret bound is

1
T

T

∑
t=1

( ft(xt)− ft(x∗)) ≤ 1
2αT
‖x∗ − x1‖2

2 +
α

2T
T ·M2.

Choosing α =
‖x∗−x1‖2

M
√

T
to minimize the RHS gives

1
T

T

∑
t=1

( ft(xt)− ft(x∗)) ≤ ‖x
∗ − x1‖2 M√

T
.

Remark 4. The above bound implies an O( 1√
T
) convergence rate for the offline setting where all

ft ≡ f . In particular, letting x̄ = 1
T ∑T

t=1 xt, we have

f (x̄)− f (x∗) ≤ 1
T

T

∑
t=1

[ f (xt)− f (x∗)] ≤ ‖x
∗ − x1‖2 M√

T
,

where the first step above is by Jensen’s inequality. This recovers the result from Lecture 17 on
subgradient descent.
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6.2 Exponentiated gradient descent

Let X = ∆d, and ψ(x) = ∑j xj log xj be the negative entropy. Then ψ is 1-strongly convex with
respect to ‖·‖1, with dual norm ‖·‖∞. Then the regret bound is

1
T

T

∑
t=1

( ft(xt)− ft(x∗)) ≤ 1
αT

DKL (x∗, x1) +
α

2T

T

∑
t=1
‖gt‖2

∞ .

If in addition we take the initial iterate x1 = ( 1
d , . . . , 1

d ) to be the uniform distribution, then one can

verify that DKL (x∗, x1) ≤ log d. Also, set α =

√
log d

2T maxt‖gt‖2
∞

. Then the average regret is

1
T

T

∑
t=1

( ft(xt)− ft(x∗)) ≤

√
log d ·maxt ‖gt‖2

∞
T

. (6)

Remark 5. Compared to online gradient descent, the dependence on the gradients gt is maxt ‖gt‖∞
instead of maxt ‖gt‖2. Thus exponentiated gradient descent can do better than gradient descent
when the gradients gt are small in magnitude and not sparse.

6.3 Expert problem

Recall that ltj is the loss of expert j at time t, and that gt = lt ∈ {0, 1}d. Thus ‖gt‖∞ ≤ 1. Plugging
this into the bound for exponentiated gradient descent gives

1
T

T

∑
t=1

( ft(xt)− ft(x∗)) ≤
√

log d
T

Remark 6. This regret bound is optimal for the expert problem. In comparison, gradient descent

would get
√

d
T regret, which has an exponentially larger dependence on the dimension d.

7 Extensions

1. We chose our step size α to be proportional to 1√
T

. This requires the time horizon to be

known to the algorithm. If T is not known, one can use a varying step size αt = 1√
t

and
prove essentially the same guarantees (under a slightly stronger boundedness assumption;
see Duchi’s notes.)

2. Improved bounds. If more is known about the loss function ft, then better regret bounds (in
the online setting) and convergence rates (in the offline setting) can be obtained.

• ft is smooth (gradient is Lipschitz): We have an improvement 1√
T
→ 1

T in average re-

gret. This can be further improved to 1
T2 using ideas similar to Nesterov’s acceleration.

• ft is strongly convex: We have an improvement 1√
T
→ log T

T in average regret.

See Xinhua Zhang’s notes for details.

3. So far, we assumed that we observe the losses of all the experts/arms, even those we did
not choose/pull. This is the full information setting. Next week, we will look at the “bandit
information” setting, where we only observe the loss of the expert/arm that we choose/pull,
that is, we only see one entry of ∇ ft = gt = lt.

6
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8 Why is it called mirror descent?

The online mirror descent update (1) can be written equivalently as

compute yt+1 ∈ Rd such that ∇ψ(yt+1) = ∇ψ(xt)− αtgt (7a)
compute xt+1 ∈ argmin

x∈X
Bψ(x, yt+1). (7b)

To see the equivalence, we continue from (7b) to get

xt+1 = argmin
x∈X

{ψ(x)− ψ(yt+1)− 〈∇ψ(yt+1), x− yt+1〉}

= argmin
x∈X

{ψ(x)− ψ(yt+1)− 〈∇ψ(xt)− αtgt, x− yt+1〉} by (7a)

= argmin
x∈X

{αt 〈gt, x〉+ ψ(x)− 〈∇ψ(xt), x〉} omit terms independent of x

= argmin
x∈X

{
αt 〈gt, x〉+ Bψ(x, xt)

}
= (1).

One can view ∇ψ : Rd → Rd as a mapping from the primal space to the dual/mirror space,
and (∇ψ)−1 is the inverse mapping from the mirror space to the primal space. Therefore, in (7a),
we first map xt to ∇ψ(xt), then perform an gradient descent step ∇ψ(xt) − αtgt in this mirror
space, and finally map back to the primal space to obtain yt+1 = (∇ψ)−1 (∇ψ(xt)− αtgt). The
update in (7b) can be viewed as the projection of yt+1 to X with respect to the Bregman divergence
Bψ.

For an illustration see the following plot from Bubeck.

9 Lazy mirror descent

The above perspective suggests a somewhat more efficient variant of mirror descent, where we
use yt instead of xt on the RHS of (7a). This is called lazy mirror descent, as given below:

compute yt+1 ∈ Rd such that ∇ψ(yt+1) = ∇ψ(yt)− αtgt (8a)
compute xt+1 ∈ argmin

x∈X
Bψ(x, yt+1). (8b)

7
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Note that the step (8a) is equivalent to

θt+1 = ∇ψ(y1)−
∞

∑
t=1

αtgt, (9)

yt+1 ∈ (∇ψ)−1(θt+1). (10)

Here we are averaging the gt’s in the dual space. Therefore, lazy mirror descent is also known as
(Nesterov’s) Dual Averaging.

In the original mirror descent (7), we go back and forth between the primal and mirror space:
xt → ∇ψ(xt) → (∇ψ)−1 (∇ψ(xt)− αtgt). In lazy mirror descent, the step (8b) or (9) is done
purely in the mirror space; only when asked to output xt+1, we map the dual point θt+1 back to
the primal space. One may notice that if gt = ∇ ft(xt) is the gradient at xt, then one needs to
compute the primal points yt and xt in every iteration. However, this only involves the backward
map ∇−1ψ, so we do not need to compute the forward map ∇ψ as in the original mirror descent.
This can be advantageous in the distributed setting, or when ∇−1ψ is easier to compute than ∇ψ.

In the special case of X = ∆d and ψ(x) = ∑j xj log xj (i.e., exponentiated gradient descent),
mirror descent and lazy mirror descent are equivalent, corresponding to the updates (2) and (3)
respectively.

9.1 Regret bound

Lazy mirror descent enjoys a similar convergence guarantee as mirror descent. Recall that each ft
is convex and gt = ∇ ft(xt).

Theorem 2. Suppose that ψ is 1-strongly convex with respect to ‖·‖ with dual norm ‖·‖∗. Consider the
lazy mirror descent (8) with constant step size αt ≡ α and initial point x1 = y1 satisfying ∇ψ(y1) = 0.
We have the regret bound

1
T

T

∑
t=1

[ ft(xt)− ft(x∗)] ≤ 1
αT

(ψ(x∗)− ψ(x1)) +
2α

T

T

∑
t=1
‖gt‖2

∗ .

Proof. For each t define the potential function Lt(x) := α ∑t−1
s=1 〈gs, x〉+ ψ(x), which is 1-strongly

convex since ψ is. From (9) and ∇ψ(y1) = 0, we have

xt ∈ argmin
x∈X

Bψ(x, yt) = argmin
x∈X

ψ(x)− 〈∇ψ(yt), x〉 = argmin
x∈X

Lt(x).

By strong convexity we have

Lt+1(xt+1)− Lt+1(xt) ≤ 〈∇Lt+1(xt+1), xt+1 − xt〉 −
1
2
‖xt+1 − xt‖2 ≤ −1

2
‖xt+1 − xt‖2 ,

where the last step follows from the first-order optimality condition for xt+1 w.r.t. Lt+1. We also
have

Lt+1(xt+1)− Lt+1(xt) = Lt(xt+1)− Lt(xt) + α 〈gt, xt+1 − xt〉 ≥ α 〈gt, xt+1 − xt〉

by optimality of xt w.r.t. Lt. Combining the last two inequalities, we get

1
2
‖xt+1 − xt‖2 ≤ −α 〈gt, xt+1 − xt〉 ≤ α ‖gt‖∗ ‖xt+1 − xt‖ .

8
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This implies that ‖xt+1 − xt‖ ≤ 2α ‖gt‖∗ and thus

〈gt, xt − xt+1〉 ≤ ‖gt‖∗ ‖xt+1 − xt‖ ≤ 2α ‖gt‖2
∗ . (11)

We claim that

T−1

∑
t=1
〈gt, xt+1〉+

ψ(x1)

α
≤

T−1

∑
t=1
〈gt, x〉+ ψ(x)

α
, ∀x ∈ X . (12)

We prove by induction on T. For T = 1, the inequality (12) becomes ψ(x1) ≤ ψ(x∗), which holds
because x1 satisfies ∇ψ(x1) = 0 and is thus a minimizer of ψ. Now assume that the bound (12)
holds for some T. Setting x = xT+1 we get

T−1

∑
t=1
〈gt, xt+1〉+

ψ(x1)

α
≤

T−1

∑
t=1
〈gt, xT+1〉+

ψ(xT+1)

α
.

Hence

T

∑
t=1
〈gt, xt+1〉+

ψ(x1)

α
≤ 〈gT, xT+1〉+

T−1

∑
t=1
〈gt, xT+1〉+

ψ(xT+1)

α︸ ︷︷ ︸
LT+1(xT+1)

≤
T

∑
t=1
〈gt, x〉+ ψ(x)

α︸ ︷︷ ︸
LT+1(x)

,

where the last step holds since xT+1 ∈ argminx∈X LT+1(x). This proves (12) for T + 1.
Combining pieces, we obtain

T

∑
t=1

[ ft(xt)− ft(x∗)] ≤
T−1

∑
t=1
〈gt, xt − x∗〉 ft is convex

=
T−1

∑
t=1
〈gt, xt − xt+1〉+

T−1

∑
t=1
〈gt, xt+1 − x∗〉 (11), and (12) with x=x∗,

≤
T−1

∑
t=1

2α ‖gt‖2
∗ +

ψ(x∗)− ψ(x1)

α
.

Dividing both sides by T proves Theorem 2.
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