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Beyond Blackbox Models: Structured Nonsmooth Problems

Yudong Chen

This semester we have mostly considered the “blackbox model” for optimization: we access the
objective function through its function value and derivatives at each query point, but we do not
make use of other internal structure of the function.

Many interesting functions have rich additional structures. For example, they are built from
simple functions using simple operations. Better performance can sometimes be achieved by taking
advantage of such structures. In this lecture we look at one such setting, where we minimize a
nonsmooth function that is given by the maximum of smooth functions.

Readings:

• Sections 4.5, 4.6 and 5.2 of Bubeck’s monograph

• Juditsky and Nemiroski, First-Order Methods for Nonsmooth Convex Large-Scale Optimiza-
tion, Part I and Part II

1 Smooth saddle-point representation of non-smooth functions

Consider minimizing a nonsmooth convex function f : Rd → R over some convex set X ⊆ Rd. We
assume that f is given by the maximum of n smooth convex functions, leading to the problem

min
x∈X

max
1≤i≤n

fi(x)︸ ︷︷ ︸
f (x)

. (1)

The problem (1) can be rewritten as a saddle point problem. We concatenate the fi’s into
a vector-valued function ~f : Rd → Rn with ~f (x) = ( f1(x), . . . , fn(x))> ∈ Rn. Let ∆n :={

y ∈ Rn : ∑n
j=1 yj = 1; yi ≥ 0, ∀i

}
denote the probability simplex in n dimensions. Finally, de-

fine the bivariate function H : Rd ×Rn → R by H(x, y) =
〈
~f (x), y

〉
= ∑n

i=1 fi(x)yi. With these
notations, we can rewrite f as

f (x) = max
y∈∆n

H(x, y).

Therefore, the problem (1) is equivalent to the min-max problem

min
x∈X

max
y∈Y

H(x, y),

where Y = ∆n.
For each fixed y, H is convex and smooth in x (since the fi’s are convex and smooth). For each

fixed x, H is linear (hence concave and smooth) in y. By Sion’s minimax theorem, there exists a pair
(x∗, y∗) ∈ X × ∆n that satisfies

H(x∗, y∗) = max
y∈Y

H(x∗, y) = min
x∈X

H(x, y∗). (2)
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The pair (x∗, y∗) is called a saddle point of H. Note that x∗ ∈ argminx∈X f (x). Moreover, the order
of the min and max does not matter:

min
x∈X

max
y∈Y

H(x, y) = max
y∈Y

min
x∈X

H(x, y).

We have transformed a nonsmooth optimization problem (1) to the saddle point problem (2),
which involves a smooth function H.

1.1 Optimality condition

Below we consider the saddle point problem (2) in its general form, where X ,Y are any convex
compact sets and H is a general smooth convex-concave function. The goal is to find a saddle point
(x∗, y∗), which by satisfies

max
y∈Y

H(x∗, y)−min
x∈Y

H(x, y∗) = 0.

This suggests that one can measure the quality of a candidate solution (x̃, ỹ) ∈ X ×Y by the
duality gap

max
y∈Y

H(x̃, y)−min
x∈Y

H(x, ỹ) =
(

max
y∈Y

H(x̃, y)− H(x̃, ỹ)
)
+

(
H(x̃, ỹ)−min

x∈Y
H(x, ỹ)

)
.

A pair (x̃, ỹ) with a small duality gap can be viewed as an approximate saddle point.
The duality gap is an analogue of the optimality gap in minimization problems. For convex

minimization problem, the optimality gap can be upper bounded in terms of the gradient as
F(x̃)− F(x∗) ≤ 〈∇F(x̃), x̃− x∗〉 . This relationship can be generalized to saddle point problems,
where the duality gap can be upper bounded by the gradients of H.

Let

gX (x, y) =
∂

∂x
H(x, y), (3a)

gY (x, y) = − ∂

∂y
H(x, y) (3b)

be the gradient and negative gradient of H w.r.t. x and y, respectively. Note the minus sign
for gY , as we are maximizing over y. Define the product set Z := X × Y , the joint variables
z = (x, y) ∈ Z , z̃ = (x̃, ỹ) ∈ Z , and the joint vector field g(z̃) = (gX (x̃, ỹ), gY (x̃, ỹ)) . Note that g
need not be the gradient field of any function due to the minus sign above.

By convexity of H(·, ỹ) for each fixed ỹ, we have

H(x̃, ỹ)− H(x, ỹ) ≤ 〈gX (x̃, ỹ), x̃− x〉 , ∀x ∈ X .

Similarly by concavity of H(x̃, ·) we have

H(x̃, y)− H(x̃, ỹ) ≤ 〈gY (x̃, ỹ), ỹ− y〉 , ∀y ∈ X .

Adding up, we see that there exists some (x, y) ∈ X ×Y such that the duality gap can be controlled
by

max
y∈Y

H(x̃, y)−min
x∈Y

H(x, ỹ) ≤ 〈gX (x̃, ỹ), x̃− x〉+ 〈gY (x̃, ỹ), ỹ− y〉

= 〈g(z̃), z̃− z〉 . (4)
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Consequently, if a pair z∗ ∈ Z satisfies

〈g(z∗), z∗ − z〉 ≤ 0, ∀z ∈ Z , (5)

then z∗ has zero duality gap and is thus a saddle point of H. Equation (5) is equivalent to
−g(z∗) ∈ NZ (z∗), generalizing the optimality condition for constrained optimization.

To solve for an approximate saddle point, it suffices to find a solution z̃ for which the RHS of (4)
is small for all z ∈ Z . Our method of choice is the mirror-prox algorithm, which generalizes mirror
descent and is applicable even when g is not a gradient field.

Remark 1. Equation (5) is called a Variational Inequality (VI) associated with the vector field g. Many
important problems are special cases of VIs. Examples include computing Nash equilibria in
two-player zero-sum games, Bellman equations in reinforcement learning, KKT conditions in
optimization, and nonlinear fixed point equations in computational physics.

2 Mirror-prox

To motivate the mirror-prox algorithm, let us consider the simpler minimization problem minx∈X F.
Consider the so-called proximal-point method:

xt+1 = argmin
x∈X

{
F(x) +

1
2α
‖x− xt‖2

2

}
, (6)

m (by optimality condition)
xt+1 = PX {xt − α∇F(xt+1)} . (7)

This method has very good convergence performance, but it is not immediately implementable.
In particular, the optimization problem in (6) seems as hard as minimizing F itself, and (7) is an
“implicit update” where xt+1 appears on both sides.

As an implementable approximation, we consider

yt+1 = PX (xt − α∇F(xt)) = argmin
y∈X

{
〈∇F(xt), y〉+ 1

2α
‖y− xt‖2

2

}
, (8a)

xt+1 = PX (xt − α∇F(yt+1)) = argmin
y∈X

{
〈∇F(yt+1), x〉+ 1

2α
‖x− xt‖2

2

}
, (8b)

which is known as the extragradient method. In this method, we first perform a standard gradient
descent step (8a) on F to compute the intermediate iterate yt+1. We then run an “extra” gradient
descent step (8b), in which yt+1 is used as an approximation of the xt+1 on the RHS of the implicit
update (7).

Mirror-prox is a generalization of extragradient. Let g : Rd → Rd be a vector field. Let Bψ be the
Bregman divergence associated with a differentiable convex function ψ. Mirror-prox is given by
the following equations:

yt+1 = argmin
y∈X

{
〈g(xt), y〉+ 1

α
Bψ(y, xt)

}
, (9a)

xt+1 = argmin
x∈X

{
〈g(yt+1), x〉+ 1

α
Bψ(x, xt)

}
. (9b)
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One can verify that (9) is equivalent to

∇ψ(y′t+1) = ∇ψ(xt)− αg(xt), (10a)
yt+1 ∈ argmin

y∈X
Bψ(y, y′t+1), (10b)

∇ψ(x′t+1) = ∇ψ(xt)− αg(yt+1), (10c)
xt+1 ∈ argmin

x∈X
Bψ(x, x′t+1). (10d)

Note that extragradient is a special case with ψ(x) = 1
2 ‖x‖

2
2 and Bψ(x, x′) = 1

2 ‖x− x′‖2
2.

2.1 Convergence guarantee for mirror-prox

We say that the vector field g is L-Lipschitz w.r.t. ‖·‖ if

‖g(x)− g(y)‖∗ ≤ L ‖x− y‖ , ∀x, y.

The following theorem establishes that mirror-prox achieves an O(1/t) rate for Lipschitz g.

Theorem 1. Suppose ψ is µ-strongly convex with respect to the norm ‖·‖ with dual norm ‖·‖∗, and g
is L-Lipschitz with respect to ‖·‖. Let x1 = argminx∈X ψ(x) and R2 := supx∈X ψ(x)− ψ(x1). Then
mirror-prox with stepsize α = µ

L and initialized at x1 satisfies

1
T

T

∑
t=1
〈g(yt+1), yt+1 − x〉 ≤ LR2

µT
, ∀T ≥ 1, ∀x ∈ X .

When g = ∇ f is the gradient field of an (L-smooth) convex function f , the LHS above is an
upper bound on the optimality gap f

( 1
t ∑t

s=1 ys+1
)
− f (x∗) (by convexity and Jensen’s). Such

an O(1/t) bound for minimizing smooth f can also be achieved by the standard mirror descent
method. Why do we need the more sophiscated mirror-prox algorithm?

The power of mirror-prox reveals itself when g is not the gradient field of any function. In this
case, mirror descent may not even converge; see below for an example.

Example 1. Consider the min-max problem minx maxy {H(x, y) = xy}. In this case, the vector

field g : R2 → R2 defined in (3) is given by g(x, y) =

(
∂

∂x H(x, y)
− ∂

∂y H(x, y)

)
=

(
y
−x

)
. The mirror descent

algorithm with `2 Bregman divergence is given by the update(
xt+1
yt+1

)
=

(
xt
yt

)
− αg(xt, yt) =

(
xt − αyt
yt + αxt

)
,

which is also known as gradient descent-ascent. This algorithm diverges for every stepsize α > 0,
since x2

t+1 + y2
t+1 = (1 + α2)(x2

t + y2
t+1) > x2

t + y2
t+1.

2.2 Proof of Theorem 1

Proof. Fix an arbitrary x ∈ X . We write

〈g(yt+1), yt+1 − x〉 = 〈g(yt+1), xt+1 − x〉+ 〈g(xt), yt+1 − xt+1〉+ 〈g(yt+1)− g(xt), yt+1 − xt+1〉 .
(11)
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We bound these three terms separately.
For the first term, we follow the same arguments used in the analysis of mirror descent:

〈g(yt+1), xt+1 − x〉

≤1
α
〈∇ψ(xt)−∇ψ(xt+1), xt+1 − x〉 optimality condition for xt+1 and (9b)

=
1
α

(
Bψ(x, xt)− Bψ(x, xt+1)− Bψ(xt+1, xt)

)
. 3-point identity

Similar, for the second term we have

〈g(xt), yt+1 − xt+1〉

≤1
α
〈∇ψ(xt)−∇ψ(yt+1), yt+1 − xt+1〉 optimality condition for yt+1 and (9a)

=
1
α

(
Bψ(xt+1, xt)− Bψ(xt+1, yt+1)− Bψ(yt+1, xt)

)
3-point identity

≤1
α

(
Bψ(xt+1, xt)−

µ

2
‖xt+1 − yt+1‖2 − µ

2
‖yt+1 − xt‖2

)
. µ-strong convexity of ψ

For the third term, we have

〈g(yt+1)− g(xt), yt+1 − xt+1〉
≤ ‖g(yt+1)− g(xt)‖∗ ‖yt+1 − xt+1‖ Holder
≤L ‖yt+1 − xt‖∗ ‖yt+1 − xt+1‖ L-smoothness of g

≤L
2
‖yt+1 − xt‖2 +

L
2
‖yt+1 − xt+1‖2 . ab ≤ 1

2
a2 +

1
2

b2

Plugging these three bounds into (11), we get

〈g(yt+1), yt+1 − x〉 ≤1
α

(
Bψ(x, xt)− Bψ(x, xt+1)−

µ

2
‖xt+1 − yt+1‖2 − µ

2
‖yt+1 − xt‖2

)
+

L
2
‖yt+1 − xt‖2 +

L
2
‖yt+1 − xt+1‖2 .

We take α = µ
L to get cancellation on the RHS, leading to

〈g(yt+1), yt+1 − x〉 ≤ 1
α

(
Bψ(x, xt)− Bψ(x, xt+1)

)
.

Summing over t = 1, . . . , T and dividing both sides by T gives

1
T

T

∑
t=1
〈g(yt+1), yt+1 − x〉 ≤

Bψ(x, x1)

αT
=

LBψ(x, x1)

µT
.

By optimality condition for x1 = argminx∈X ψ(x), we have 〈−∇ψ(x1), x− x1〉 ≤ 0, ∀x ∈ X ,
hence

Bψ(x, x1) = ψ(x)− ψ(x1)− 〈∇ψ(x1), x− x1〉 ≤ ψ(x)− ψ(x1) ≤ R2.

The theorem follows.
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3 Saddle Point Mirror-Prox

We now apply mirror-prox to the saddle point problem (2), for which the vector field g is given in
equation (3).

Suppose ψX : X → R is 1-strongly convex onX w.r.t. some norm ‖·‖X . Let R2
X = supx∈X ψX (x)−

minx∈X ψX (x). We define ψY , ‖·‖Y and R2
Y similarly. We then define a function ψ : Z → R by

ψ(z) = aψX (x) + bψY (y). It is immediate that ψ is 1-strongly convex on Z w.r.t. the norm

‖z‖Z =
√

a ‖x‖2
X + b ‖y‖2

Y . Below we set a = 1
R2
X

, b = 1
R2
Y

.

We assume that the function H is (L11, L12, L22,L21)-smooth in the sense that∥∥gX (x, y)− gX (x′, y)
∥∥∗
X ≤ L11

∥∥x− x′
∥∥
X ,∥∥gX (x, y)− gX (x, y′)

∥∥∗
X ≤ L12

∥∥y− y′
∥∥
Y ,∥∥gY (x, y)− gY (x, y′)

∥∥∗
Y ≤ L22

∥∥y− y′
∥∥
Y ,∥∥gY (x, y)− gY (x′, y)

∥∥∗
Y ≤ L21

∥∥x− x′
∥∥
X ,

for all x, x′ ∈ X and y, y′ ∈ Y . This assumption implies that the joint vector field g is LZ -Lipschitz
on Z in the norm ‖·‖Z with LZ = 2 max

{
L11R2

X , L22R2
Y , L12RXRY , L21RXRY

}
.

The mirror-prox method (9), when specialized to the above g and ψ, is called Saddle Point
Mirror-Prox (SP-MP). It is given explicitly as follows: let z1 ∈ argminz∈Z ψ(z); compute zt = (xt, yt)
and wt = (ut, vt) by

wt+1 = argmin
z∈Z

{
〈g(zt), z〉+ 1

α
Bψ(z, zt)

}
,

zt+1 = argmin
z∈Z

{
〈g(wt), z〉+ 1

α
Bψ(z, zt)

}
.

Theorem 2. Under the above assumptions, SP-MP with α = 1
LZ

produces a pair
(

1
T ∑T

t=1 us+1, 1
T ∑T

t=1 vt+1

)
that satisfies the duality gap bound

max
y∈Y

H

(
1
T

T

∑
t=1

us+1, y

)
−min

x∈Y
H

(
x,

1
T

T

∑
t=1

vt+1

)
≤ 2LZ

T
.

Proof. Set x̃ = 1
T ∑T

t=1 us+1 and ỹ = 1
T ∑T

t=1 vt+1. We upper bound the duality gap of (x̃, ỹ) using (4),
whose RHS can in turn be bounded using Theorem 1.

In what follows we discuss the application of Theorem 2 to the nonsmooth optimization problem
(1), as well as two other applications.

3.1 Minimizing max of smooth functions

We apply Theorem 2 to the saddle point representation (2) of minimizing the nonsmooth function
f (x) = max1≤i≤n fi(x) over X . We assume each fi is M-Lipschitz and L-smooth w.r.t. ‖·‖X . Let
Y = ∆n and ‖·‖Y = ‖·‖1 and ψY = negative entropy. One can verify that the above assumptions
are satisfied with

β11 = L, β12 = M, β21 = M, β22 = 0.
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Consequently, by Theorem 2 we obtain an

O

(
LR2
X + MRX

√
log n

T

)
rate for minimizing f . This improves on the 1/

√
T rate for minimizing a general nonsmooth

function.

3.2 Two-player zero-sum games

Consider a two-player zero-sum game with the payoff matrix A ∈ Rm×n. Upon taking actions
i ∈ {1, . . . , m} and j ∈ {1, . . . , n}, respectively, player 1 receives a payoff Aij and player 2 receives
−Aij. The goal is to compute a mixed-strategy Nash equilibrium, which is a saddle point of the
bilinear min-max problem

min
x∈∆m

max
y∈∆n

x>Ay︸ ︷︷ ︸
H(x,y)

See these slides for additional background on two-player zero-sum games.
We apply SP-MP to this problem with ψX , ψY being the negative entropy, which is 1-strongly

convex w.r.t. ‖·‖1. Note that gX (x, y) = ∂
∂x H(x, y) = Ay and gY (x, y) = − ∂

∂y H(x, y) = −A>x.
We immediately have L11 = L22 = 0. Moreover, letting Ai denotes the j-th column of A and
‖A‖max := ∑ij

∣∣Aij
∣∣, we have

∥∥A(y− y′)
∥∥

∞ =

∥∥∥∥∥ n

∑
j=1

(
y(i)− y′(i)

)
Ai

∥∥∥∥∥
∞

≤ ‖A‖max

∥∥y− y′
∥∥

1 , ∀y, y′,

hence L12 = ‖A‖max; similarly L21 = ‖A‖max. Theorem 2 implies that SP-MP finds an approximate

Nash equilibrium with duality gap
‖A‖max

√
log m log n

T is T iterations. This improves on the 1/
√

T
rate of the Multiplicative Weight algorithm.

3.3 Linear max-margin classification

Consider n data points of the form (Aj, `j), i ∈ {1, . . . , n}, where Aj ∈ Rm is the feature vector
of the i-th data point and `j ∈ {±1} is the label. Using a linear classifier given by x ∈ Bm

2 :=
{x′ ∈ Rms : ‖x′‖2 ≤ 1}, we want to classify each data point such that sign(x>Aj) = `j, or equiva-
lently x>(`j Aj) > 0. Perfect classification may not be possible. In this case we instead seek for the
maximum margin classifier x, which is the solution to the min-max problem

max
x∈Bm

2

min
1≤j≤m

x>
(
`j Aj

)︸ ︷︷ ︸
margin for ith data point︸ ︷︷ ︸

margin

= max
x∈Bm

2

min
y∈∆n

x> Āy︸ ︷︷ ︸
H(x,y)

,

where Ā ∈ Rm×n is the matrix with `j Aj being its j-th column. This problem is similar to two-player
zero-sum games except that x lives in the unit `2 ball Bm

2 .
Suppose

∥∥Aj
∥∥

2 ≤ B, ∀j. It is easy to show that Ā is (0, B, 0, B)-smooth with respect to ‖·‖2 on
Bm

2 and ‖·‖1 on ∆n. We apply SP-MP to this problem with ψX = ‖·‖2
2 and ψY =negative entropy.

Theorem 2 implies an
B
√

log m
T rate.

The above algorithm can be adapted to compute the closely related Support Vector Machine
(SVM) classifier.
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