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Beyond Blackbox Models: Stochastic Variance Reduced
Gradient Methods

Yudong Chen

In this lecture, we discuss how to speed up stochastic optimization by leveraging the struc-
ture of the problem. In particular, we consider the Stochastic Variance Reduced Gradient (SVRG)
method for minimizing a finite sum of smooth and strongly convex functions.

Readings:

• Original SVRG paper: Johnson and Zhang 2013

• Section 6.3 of Bubeck’s monograph

• See Defazio 2014 for related methods and their relationship.

1 Finite-sum minimization

Throughout this lecture, we use∥·∥ to denote the Euclidean ℓ2 norm.
Consider unconstrained minimization of a function f : Rd → R given by

f (x) =
1
n

n

∑
i=1

fi(x),

where each individual fi is L-smooth and convex, and f is m-strongly convex w.r.t. ∥·∥. Let κ := L
m

be the condition number. Let x∗ = argminx∈Rd f (x) be the unique minimizer of f . Note that
∇ f (x∗) = 0.

The gradient descent (GD) update is given by

xt+1 = xt − α∇ f (xt) = xt − α · 1
n

n

∑
i=1

∇ fi(xt), (1)

which uses the full gradient ∇ f . The stochastic gradient descent (SGD) update is given by

xt+1 = xt − α∇ f (xt) = xt − α · ∇ fit(xt), (2)

where it is chosen uniformly at random from {1, . . . , n}.
From previous lecture, we know that GD converges to an ϵ-optimal solution in O (κ log(1/ϵ))

iterations, and each iteration takes O(n) computation since we need to compute the sum of the
gradients of n functions (ignoring dependence on d). On the other hand, SGD can be shown to
converge in O

( 1
mϵ

)
iterations (see Lecture 18, Section 3.3.3), and each iteration takes O(1) compu-

tation. The total computation is O (nκ log(1/ϵ)) for GD and O
( 1

mϵ

)
for SGD.

Can we do better by leveraging the finite-sum structure? Below we show that this is possible
and one can achieve an O ((n + κ) log(1/ϵ)) complexity.
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2 Stochastic Variance Reduced Gradient (SVRG)

We want to reduce the variance of the stochastic gradient ∇ fi(x). One idea is to subtract from
∇ fi(x) a mean-zero random variable Z that correlates with ∇ fi(x). In this case, we have E [∇ fi(x)− Z] =
E [∇ fi(x)]− 0 = ∇ f (x), which is still unbiased. Moreover, the new variance Var(∇ fi(x)− Z) =
Var(∇ fi(x)) + Var(Z)− 2 cov(∇ fi(x), Z) may be smaller than Var(∇ fi(x)).

One may want to subtract Z = ∇ fi(x∗)−∇ f (x∗), but we do not know x∗. But we can approx-
imate x∗ using the average y of the past iterates. Doing so requires computing the full gradient
∇ f (y), an expensive operation that we will do only once in a while.

This leads to the SVRG method, given in Algorithm 1.

Algorithm 1 SVRG

input: initial y(1), strong convexity parameter m, smoothness parameter L, stepsize α, number of
inner iterations K
for s = 0, 1, 2, . . .

x(s)1 = y(s)

for k = 1, . . . K
x(s)k+1 = x(s)k − α

(
∇ fis,k(x(s)k )−∇ fis,k(y

(s)) +∇ f (y(s))
)

,
where is,k ∼ uniform{1, . . . , n}

y(s+1) = 1
K ∑K

k=1 x(s)k

The following lemma quantifies the variance (the second moment to be precise) of the “ideal”
stochastic gradient ∇ fi(x) − (∇ fi(x∗)−∇ f (x∗)). In particular, the closer f (x) is to f (x∗), the
smaller the variance is.1 The proof of the lemma exploits the property that smoothness is satisfied
by each individual fi, not just the the overall objective f .

Lemma 1. Let i ∼ uniform {1, . . . , n}. We have

Ei ∥∇ fi(x)−∇ fi(x∗)∥2 ≤ 2L ( f (x)− f (x∗)) .

Proof. By convexity and L-smoothness of fi, we have

∥∇ fi(x)−∇ fi(x∗)∥2 ≤ 2L [ fi(x)− fi(x∗)− ⟨∇ fi(x∗), x − x∗⟩]

(we proved this in HW2 Q1.2 as an intermediate step for proving co-coercivity). Taking the expec-
tation of both sides gives

Ei ∥∇ fi(x)−∇ fi(x∗)∥2 ≤ 2L [Ei [ fi(x)]− Ei [ fi(x∗)]− ⟨Ei [∇ fi(x∗)] , x − x∗⟩]
= 2L [ f (x)− f (x∗)− ⟨∇ f (x∗), x − x∗⟩] ,

which proves the lemma.

We can show that the outer iteration of SVRG achieves geometric convergence.

Theorem 1. Let f1, . . . , fn : Rd → R be L-smooth and convex, and f = 1
n ∑n

i=1 fi be m-strongly convex.
Then SVRG with stepsize α = 1

10L and K = 20 L
m satisfies

E
[

f (y(s+1))
]
− f (x∗) ≤ 0.9s

(
f (y(1))− f (x∗)

)
, ∀s.

1This is similar to the B = 0 case discussed in Section 3.3.2 of Lecture 18. Recall that in this case, geometric conver-
gence can be achieved.
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Under the above choice of parameters, each outer iteration of SVRG involves computing the
full gradient once (O(n) computation) and computing the stochastic gradient K = O(κ) times.
Thanks to geometric convergence, the number of outer iterations for achieving ϵ-optimality is
log(1/ϵ). Consequently, the overall computation is O ((n + κ) log(1/ϵ)).

Proof. It suffices to show that

E
[

f (y(s+1))
]
− f (x∗) ≤ 0.9

(
f (y(s))− f (x∗)

)
, (3)

where y(s+1) = 1
K ∑K

k=1 x(s)t . Below we drop the dependence on s to simplify notation.
Define the shorthand

vk = ∇ fik(xk)−∇ fik(y) +∇ f (y),

so xk+1 = xk − αvk. It follows that

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2α ⟨vk, xk − x∗⟩+ α2 ∥vk∥2 . (4)

For the second RHS term, we have

Eik ⟨vk, xk − x∗⟩ =
〈
Eik∇ik f (xk)− Eik∇ik f (y) +∇ f (y), xk − x∗

〉
= ⟨∇ f (xk), xk − x∗⟩ stochastic gradient is unbiased
= ⟨∇ f (xk)−∇ f (x∗), xk − x∗⟩ ∇ f (x∗) = 0
≥ f (xk)− f (x∗). convexity

For the last RHS term, we have

Eik ∥vk∥2

≤2Eik

∥∥∇ fik(xk)−∇ fik(x∗)
∥∥2

+ 2Eik

∥∥∇ fik(y)−∇ fik(x∗)−∇ f (y)
∥∥2 ∵ s ∥a + b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2

=2Eik

∥∥∇ fik(xk)−∇ fik(x∗)
∥∥2

+ 2Eik

∥∥∇ fik(y)−∇ fik(x∗)− Eik [∇ fik(y)−∇ fik(x∗)]
∥∥2 unbiased stochastic gradient

≤2Eik

∥∥∇ fik(xk)−∇ fik(x∗)
∥∥2

+ 2Eik

∥∥∇ fik(y)−∇ fik(x∗)
∥∥2

E ∥X − EX∥2 ≤ E ∥X∥2

≤4L ( f (xk)− f (x∗)) + 4L ( f (y)− f (x∗)) . Lemma 1

Plugging these bounds into (4), we get

Eik ∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2α (1 − 2αL) ( f (xk)− f (x∗)) + 4α2L ( f (y)− f (x∗)) .

Summing over k = 1, . . . , K and taking expectation w.r.t. all i1, . . . iK, we obtain

0 ≤ E ∥xK+1 − x∗∥2 ≤ E ∥x1 − x∗∥2 − 2α (1 − 2αL)E
K

∑
k=1

( f (xk)− f (x∗)) + 4α2LK ( f (y)− f (x∗)) .

(5)
Recall that x1 = y. By m-strong convexity of f we have

∥x1 − x∗∥2 ≤ 2
m

( f (x1)− f (x∗)) =
2
m

( f (y)− f (x∗)) .
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By convexity Jensen’s we have

1
K

K

∑
k=1

( f (xk)− f (x∗)) ≥ f

(
1
K

K

∑
k=1

xk

)
− f (x∗).

Combining the last equations with (5), we obtain

0 ≤ 2
m

( f (y)− f (x∗))− 2α (1 − 2αL)K

[
f

(
1
K

K

∑
k=1

xk

)
− f (x∗)

]
+ 4α2LK ( f (y)− f (x∗)) .

Rearranging gives

f

(
1
K

K

∑
k=1

xk

)
− f (x∗) ≤

[
1

mα(1 − 2αL)K
+

2αL
1 − 2αL

]
( f (y)− f (x∗)) .

With α = 1
10L and K = 20 L

m , the expression inside the square bracket becomes 0.9, which proves
the desired inequality (3).
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