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Beyond Blackbox Models: Stochastic Variance Reduced
Gradient Methods

Yudong Chen

In this lecture, we discuss how to speed up stochastic optimization by leveraging the struc-
ture of the problem. In particular, we consider the Stochastic Variance Reduced Gradient (SVRG)
method for minimizing a finite sum of smooth and strongly convex functions.

Readings:

¢ Original SVRG paper: Johnson and Zhang 2013
¢ Section 6.3 of Bubeck’s monograph

¢ See Defazio 2014 for related methods and their relationship.

1 Finite-sum minimization

Throughout this lecture, we use||-|| to denote the Euclidean ¢, norm.
Consider unconstrained minimization of a function f : R? 5 R given by

where each individual f; is L-smooth and convex, and f is m-strongly convex w.rt. ||-||. Letx := £
be the condition number. Let x* = argmin,_p. f(x) be the unique minimizer of f. Note that
Vf(x*)=0.

The gradient descent (GD) update is given by

Xep1 = xXp — aVf(x) :xt—a-iini(xt), (1)
i=1

which uses the full gradient V f. The stochastic gradient descent (SGD) update is given by
Xep1 =X —aVf(x) =x—a- Vi (x), (2)

where i; is chosen uniformly at random from {1,...,n}.

From previous lecture, we know that GD converges to an e-optimal solution in O (xlog(1/¢€))
iterations, and each iteration takes O(n) computation since we need to compute the sum of the
gradients of n functions (ignoring dependence on d). On the other hand, SGD can be shown to
converge in O (- ) iterations (see Lecture 18, Section 3.3.3), and each iteration takes O(1) compu-
tation. The total computation is O (nx log(1/€)) for GD and O (- ) for SGD.

Can we do better by leveraging the finite-sum structure? Below we show that this is possible
and one can achieve an O ((n + «) log(1/€)) complexity.
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https://proceedings.neurips.cc/paper/2013/file/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf
https://arxiv.org/abs/1405.4980
https://arxiv.org/abs/1407.0202
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2 Stochastic Variance Reduced Gradient (SVRG)

We want to reduce the variance of the stochastic gradient V f;(x). One idea is to subtract from
V fi(x) amean-zero random variable Z that correlates with V f;(x). In this case, we have E [V f;(x) — Z] =
E [Vfi(x)] —0 = Vf(x), which is still unbiased. Moreover, the new variance Var(Vf;(x) — Z) =
Var(Vfi(x)) + Var(Z) — 2 cov(V fi(x), Z) may be smaller than Var(V f;(x)).

One may want to subtract Z = V f;(x*) — V f(x*), but we do not know x*. But we can approx-
imate x* using the average y of the past iterates. Doing so requires computing the full gradient
Vf(y), an expensive operation that we will do only once in a while.

This leads to the SVRG method, given in Algorithm 1.

Algorithm 1 SVRG

input: initial y(!), strong convexity parameter 1, smoothness parameter L, stepsize «, number of
inner iterations K
fors=0,1,2,...
x:(lS) = y(s)
fork=1,...K
i = x5 —a (VA0 - VL) + V),

where i, ~ uniform{1,...,n}

yer = X xlgs)

The following lemma quantifies the variance (the second moment to be precise) of the “ideal”
stochastic gradient Vf;(x) — (Vfi(x*) — Vf(x*)). In particular, the closer f(x) is to f(x*), the
smaller the variance is.! The proof of the lemma exploits the property that smoothness is satisfied
by each individual f;, not just the the overall objective f.

Lemma 1. Let i ~ uniform{1,...,n}. We have
E; |[Vfi(x) = V(I < 2L (f(x) = f(x7)).
Proof. By convexity and L-smoothness of f;, we have
IV£i(x) = VA ? < 2L[fi(x) = filx") = (VAE), x = x7)]

(we proved this in HW2 Q1.2 as an intermediate step for proving co-coercivity). Taking the expec-
tation of both sides gives

E: |V £i(x) - VA()|? < 2L[E; [fi(x)] - B [fi(x")] — (B [Vi(x")], x - x°)]
=2L[f(x) = f(x") = (Vf(x"), x = 2],
which proves the lemma. O
We can show that the outer iteration of SVRG achieves geometric convergence.

Theorem 1. Let fi,..., fu : RY — R be L-smooth and convex, and f = L Y', f; be m-strongly convex.
Then SVRG with stepsize o = ﬁ and K = 20% satisfies

E [fy )] - f(x) 09 (FyV) = f(x)), Vs

IThis is similar to the B = 0 case discussed in Section 3.3.2 of Lecture 18. Recall that in this case, geometric conver-
gence can be achieved.
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Under the above choice of parameters, each outer iteration of SVRG involves computing the
full gradient once (O(n) computation) and computing the stochastic gradient K = O(x) times.
Thanks to geometric convergence, the number of outer iterations for achieving e-optimality is
log(1/€). Consequently, the overall computation is O ((n + «) log(1/¢€)).

Proof. 1t suffices to show that

E [f(y)] = f(x) <09 (F) - f(x), ©)
(s)

where y+1) = 1 YK | x;”). Below we drop the dependence on s to simplify notation.
Define the shorthand

v = Vi (x) = Vi (y) +Vf(y),

SO Xg11 = X; — avg. It follows that
s — 27117 = llxe — 2% — 20 (03, ¢ — °) + a2 g @)
For the second RHS term, we have

E;, (or, 2 — %) = (B, Vi f(xx) = Ei Vi f(y) + Vf(y), 2 — x7)

= (Vf(xg), xx — x*) stochastic gradient is unbiased
= (Vf(xx) = Vf(x"), xp — x7) V(") =
> fxx) = f(x7). convexity

For the last RHS term, we have
Ej, ||ok]|?

<2E;, ||V fi, (%) — Vi (x)|]° +2E;, |V fio(y) = Vi (x) = VEW)|? s lla+b)* < 2]alf* + 216

=2E;, vaik (xk vflk H

+2E;, ||Vfi(y) — Vi (x*) = E;, [Vfi(y) = Vi (x)]|
<2E;, ||V £, (x) = V£, (5)||* + 2E;, | Vi, (v) — Vi, ()] E|X - EX|* < E|X|?
<4L (f(xx) — f(x*)) +4L (f(y) — f(x*)). Lemma 1

Plugging these bounds into (4), we get

Ej, [lxiin — x7|* < [lx — 7| = 20 (1= 2aL) (f () — f(x")) +40°L (f(y) — f(x7)).

Summing over k = 1,...,K and taking expectation w.r.t. all 71, . . . ix, we obtain

2 unbiased stochastic gradient

K
0 < E||xger — || S Eflag — 2> =20 (1 - 2aL) E ) (f(x) — f(x7)) + 4a>LK (f(y) — f(x")).

k=1
)
Recall that x; = y. By m-strong convexity of f we have

=P < 2 () — F(6)) = 2 (F(y) — Fx)).
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convexity Jensen’s we have
By ty ! h

1

=

L ()~ S 2 f (; Y xk> ~ Fx*).

k=1

Combining the last equations with (5), we obtain

K
0<—(f(y) = f(x7)) =2« (1 -2aL) K f(l kZXk) — f(x) | +4’LK (f(y) — f(x)).
=1

SRR
=

Rearranging gives

K 114
f (; > xk> 16 < | DR T | )~ F).

k=1

With o = 10% and K = 20#, the expression inside the square bracket becomes 0.9, which proves
the desired inequality (3). O
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