Lecture 3: Solution Concepts; Taylor's Theorems

Yudong Chen

Consider the problem

$$
\begin{equation*}
\min _{x \in \mathcal{X}} f(x) \tag{P}
\end{equation*}
$$

where $\mathcal{X} \subseteq \operatorname{dom}(f) \subseteq \mathbb{R}^{n}$ is a closed set.

1 A Taxonomy of Solutions to (P)

Will use "solution" and "minimizer" interchangeably.
Definition 1. We say that $x^{*} \in \mathcal{X} \subseteq \operatorname{dom}(f)$ is

1. a local minimizer/solution of (P) if there exists a neighborhood $\mathcal{N}_{x^{*}}$ of x^{*} such that for all $x \in \mathcal{N}_{x^{*}} \cap \mathcal{X}$ we have $f(x) \geq f\left(x^{*}\right) ;$
2. a global minimizer of (P) if $\forall x \in \mathcal{X}: f(x) \geq f\left(x^{*}\right)$
3. a strict local minimizer of (P) if there exists a neighborhood $\mathcal{N}_{x^{*}}$ of x^{*} such that for all $x \in$ $\mathcal{N}_{x^{*}} \cap \mathcal{X}$ and $x \neq x^{*}$ we have $f(x)>f\left(x^{*}\right)$; (i.e., satisfies part 1 with a strict inequality)
4. an isolated local minimizer of (P) if there exists a neighborhood $\mathcal{N}_{x^{*}}$ such that $\forall x \in \mathcal{N}_{x^{*}} \cap \mathcal{X}$: $f(x) \geq f\left(x^{*}\right)$ and $\mathcal{N}_{x^{*}}$ does not contain any other local minimizer.
5. a unique minimizer if it is the only global minimizer.

Example 1. A local minimizer that is not strict: consider a constant function
Example 2. A local minimizer that is not global: (picture)

Exercise 1. Prove that every isolated local minimizer is strict.
The converse of the above statement does not hold in general, as demonstrated by the example below.

Example 3. A strict minimizer that is not isolated:

- (not continuous) $f_{1}(x)=\left\{\begin{array}{ll}1 & x \neq 0 \\ 0 & x=0\end{array}\right.$ and $x^{*}=0$.
- (continuous) $f_{2}(x)=\left\{\begin{array}{ll}x^{2}\left(1+\sin ^{2}\left(\frac{1}{x}\right)\right) & x \neq 0 \\ 0 & x=0\end{array}\right.$ and $x^{*}=0$.

Illustration: Left f_{1}. Right: f_{2}.

We want to determine whether a particular point is a local or global minimizer. A powerful tool is Taylor's theorem.

2 Taylor's Theorem

For this part and until explicitly stated otherwise, we will be assuming that f is at least once continuously differentiable (i.e., gradient exists everywhere and is continuous).

Recall: Taylor's Theorem for 1D functions from calculus: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a k-times continuously differentiable function. Then

$$
\forall x, y \in \mathbb{R}: f(y)=f(x)+\frac{1}{1!} f^{\prime}(x)(y-x)+\frac{1}{2!} f^{\prime \prime}(x)(y-x)^{2}+\cdots+\frac{1}{k!} f^{(k)}(x)(y-x)^{k}+\underbrace{R_{k}(y)}_{\text {remainder }} .
$$

Typical forms of $R_{k}(y)$ (assume that f is $k+1$ times continuously differentiable):

- Lagrange (mean-value) remainder:

$$
R_{k}(y)=\frac{1}{(k+1)!} f^{(k+1)}(x+\gamma(y-x)) \cdot(y-x)^{k+1}
$$

for some $\gamma \in(0,1)$;

- Integral remainder:

$$
R_{k}(y)=\frac{1}{k!} \int_{0}^{1}(1-t)^{k} f^{(k+1)}(x+t(y-x))(y-x)^{k+1} \mathrm{~d} t
$$

Below is the multivariate version.

Theorem 1 (Taylor's Theorem; Thm 2.1 in Wright-Recht). Let $f: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ be a continuously differentiable function. Then, for all $x, y \in \operatorname{dom}(f)$ such that $\{(1-\alpha) x+\alpha y: \alpha \in(0,1)\} \subseteq \operatorname{dom}(f)$, we have

1. $f(y)=f(x)+\int_{0}^{1}\langle\nabla f(x+t(y-x)), y-x\rangle \mathrm{d} t$
2. $f(y)=f(x)+\langle\nabla f(x+\gamma(y-x)), y-x\rangle$ for some $\gamma \in(0,1)$ (a.k.a. Mean Value Thm).

If f is twice continuously differentiable:
3. $\nabla f(y)=\nabla f(x)+\int_{0}^{1} \nabla^{2} f(x+t(y-x))(y-x) \mathrm{d} t$. Here

$$
\nabla^{2} f(x)=\left[\begin{array}{cc}
\cdots \\
\vdots & \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) \\
\cdots & \vdots
\end{array}\right] \in \mathbb{R}^{d \times d}
$$

denotes the Hessian matrix ("second-order derivative") of f at x.
4. $\exists \gamma \in(0,1):$

$$
\begin{aligned}
f(y) & =f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2}\left\langle\nabla^{2} f(x+\gamma(y-x))(y-x), y-x\right\rangle \\
& =f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2}(y-x)^{\top} \nabla^{2} f(x+\gamma(y-x))(y-x)
\end{aligned}
$$

Remark 1. A common mistake is to write down the following "Mean-Value Thm" for the gradient:

$$
\exists \gamma \in(0,1): \nabla f(y)=\nabla f(x)+\nabla^{2} f(x+\gamma(y-x))(y-x) ? \longleftarrow \text { This is wrong! }
$$

2.1 Digression: order notation

Two sequences: $\left\{a_{k}\right\}_{k \geq 1},\left\{b_{k}\right\}_{k \geq 1}$, for all $k: a_{k}, b_{k} \geq 0$.
Big-Oh notation: $\quad a_{k}=O\left(b_{k}\right) \Longleftrightarrow$

$$
(\exists M>0)(\exists K<\infty)(\forall k \geq K): a_{k} \leq M b_{k}
$$

e.g. $k=O\left(\frac{1}{10} k^{2}\right), k=O\left(\frac{1}{10!} k\right)$

If $a_{k}=O\left(b_{k}\right)$ and $b_{k}=O\left(a_{k}\right)$, we write $a_{k}=\Theta\left(b_{k}\right)$.

Little-oh notation:

$$
a_{k}=o\left(b_{k}\right) \Longleftrightarrow \lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=0 .
$$

So $a_{k}=o(1)$ means $a_{k} \rightarrow 0$.
Using the notations above, we can show that for f continuously differentiable at x, we have

$$
f(x+p)=f(x)+\nabla f(x)^{\top} p+o(\|p\|) .
$$

Explicitly, this means

$$
\lim _{\|p\| \rightarrow 0} \frac{\left|f(x+p)-f(x)+\nabla f(x)^{\top} p\right|}{\|p\|}=0
$$

Proof. By part 2 of Theorem 1 (Taylor's), we have

$$
\begin{aligned}
f(x+p) & =f(x)+\nabla f(x+\gamma p)^{\top} p \\
& =f(x)+\nabla f(x)^{\top} p+(\nabla f(x+\gamma p)-\nabla f(x))^{\top} p \\
& =f(x)+\nabla f(x)^{\top} p+O\left(\|\nabla f(x+\gamma p)-\nabla f(x)\|_{2} \cdot\|p\|_{2}\right) \quad \text { Cauchy-Schwarz } \\
& =f(x)+\nabla f(x)^{\top} p+o\left(\|p\|_{2}\right),
\end{aligned}
$$

where the step follows from continuity of $\nabla f:\|\nabla f(x+\gamma p)-\nabla f(x)\|_{2} \rightarrow 0$ as $p \rightarrow 0$.

