Lecture 4: Smooth Functions and Optimality Conditions

Yudong Chen

In this lecture, we use Taylor's Theorem to characterize smooth functions and their local minima. In particular, we derive necessary/sufficient optimality conditions for smooth unconstrained optimization.

1 Properties of smooth functions

Recall: *f* is called *L*-smooth w.r.t. $\|\cdot\|$ if

 $\forall x, y \in \operatorname{dom}(f) : \|\nabla f(x) - \nabla f(y)\|_* \le L \|x - y\|.$

Lemma 1. Let $f : \mathbb{R}^d \to \overline{\mathbb{R}}$ be an L-smooth function w.r.t. $\|\cdot\|$. Then, $\forall x, y \in \text{dom}(f)$:

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2,$$

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle - \frac{L}{2} ||y - x||^2.$$

Proof. We prove the first inequality; second one left as exercise. From Part 1 of Taylor theorem (Theorem 1 in Lecture 3):

$$\begin{split} f(y) &- f(x) - \langle \nabla f(x), y - x \rangle \\ &= \int_0^1 \langle \nabla f(x + t(y - x)), y - x \rangle \, \mathrm{d}t - \int_0^1 \langle \nabla f(x), y - x \rangle \, \mathrm{d}t \\ &= \int_0^1 \langle \nabla f(x + t(y - x)) - \nabla f(x), y - x \rangle \, \mathrm{d}t \\ &\leq \int_0^1 \| \nabla f(x + t(y - x)) - \nabla f(x) \|_* \| y - x \| \, \mathrm{d}t \qquad \text{Holder} \\ &\leq \int_0^1 Lt \| y - x \|^2 \, \mathrm{d}t \qquad \text{Smoothness} \\ &= \frac{L}{2} \| y - x \|^2 \, . \end{split}$$

Remark 1. In fact, the condition in Lemma 1 is *equivalent* to *L*-smoothness; see Lemma 3.

Recall the Lowner order: For *symmetric* matrices A and B,

$$A \succcurlyeq B \iff A - B \succcurlyeq 0 \iff A - B$$
 is p.s.d.

In particular,

 $aI \preccurlyeq A \preccurlyeq bI \iff a \le \lambda_i(A) \le b, \forall i$

where $\lambda_1(A) \leq \cdots \leq \lambda_d(A)$ are the eigenvalues of *A*.

Lemma 2. Suppose that $f : \mathbb{R}^d \to \overline{\mathbb{R}}$ is twice continuously differentiable on dom(f). Then f is L-smooth w.r.t. $\|\cdot\|_2$ if and only if

$$-LI \preccurlyeq \nabla^2 f(x) \preccurlyeq LI, \quad \forall x \in \operatorname{dom}(f).$$

To give the proof, we use the matrix operator norm:

$$\|A\|_{2} := \sup_{x:\|x\|_{2} \neq 0} \frac{\|Ax\|_{2}}{\|x\|_{2}} \stackrel{\text{for symmetric } A}{=} \max_{i} |\lambda_{i}(A)|.$$

Then by definition:

$$\|Ax\|_{2} \le \|A\|_{2} \|x\|_{2}.$$
⁽¹⁾

Proof. \implies direction: Suppose that *f* is *L* smooth. Want to show: $\nabla^2 f(x) \preccurlyeq LI$. ($-LI \preccurlyeq \nabla^2 f(x)$ left as exercise.)

Let $x \in \text{dom}(f)$, $x + \alpha p \in \text{dom}(f)$, $\alpha > 0$. From Part 4 of Taylor theorem (Theorem 1 in Lecture 3):

$$f(x + \alpha p) = f(x) + \langle \nabla f(x), \alpha p \rangle + \frac{\alpha^2}{2} p^\top \nabla^2 f(x + \gamma \alpha p) p$$
(2)

for some $\gamma \in (0, 1)$. From Lemma 1:

$$f(x+\alpha p) \le f(x) + \langle \nabla f(x), \alpha p \rangle + \frac{L}{2} \alpha^2 \|p\|_2^2.$$
(3)

Combining (3) and (2):

$$\frac{\alpha^2}{2} p^\top \underbrace{\nabla^2 f(x + \gamma \alpha p)}_{\to \nabla^2 f(x) \text{ as } \alpha \to 0} p \le \frac{L}{2} \alpha^2 \|p\|_2^2.$$

Taking the limit $\alpha \to 0$, we get $p^{\top} \nabla^2 f(x) p \le L \|p\|_2^2$. Since p is arbitrary, we have $\nabla^2 f(x) \preccurlyeq LI$. \Leftarrow direction: Suppose that $\forall x : -LI \preccurlyeq \nabla^2 f(x) \preccurlyeq LI \iff \|\nabla^2 f(x)\|_2 \le L$. Want to show: $\forall x, y \in \text{dom}(f) : \|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2$.

From Part 3 of Taylor theorem: $\forall x, y \in \text{dom}(f)$:

-/

$$\begin{aligned} \|\nabla f(y) - \nabla f(x)\|_{2} &= \left\| \int_{0}^{1} \nabla^{2} f\left(x + t(y - x)\right) (y - x) dt \right\|_{2} \\ &\leq \int_{0}^{1} \left\| \nabla^{2} f\left(x + t(y - x)\right) (y - x) dt \right\|_{2} \end{aligned} \qquad \text{Jensen's} \\ &\leq \int_{0}^{1} \left\| \nabla^{2} f\left(x + t(y - x)\right) \right\|_{2} \|y - x\|_{2} dt \qquad \text{by (1)} \\ &\leq \int_{0}^{1} L \|y - x\|_{2} dt \\ &= L \|y - x\|_{2}. \end{aligned}$$

2 Characterizing minima of smooth functions

In this part, we consider *unconstrained* optimization, that is, $\mathcal{X} = \mathbb{R}^d$ in the problem

$$\min_{x \in \mathcal{X}} f(x) \tag{P}$$

2.1 Necessary conditions for optimality

Theorem 1.

- 1. (First-order necessary condition) Suppose that $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is continuously differentiable. If x^* is a local minimizer of f, then $\nabla f(x^*) = 0$.
- 2. (Second-order necessary condition) Suppose that $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is twice continuously differentiable. Then in additional to 1), $\nabla^2 f(x^*) \geq 0$.

Remark 2. A point *x* satisfying $\nabla f(x) = 0$ is called a (first-order) *stationary point* of *f*. A point *x* satisfying $\nabla f(x) = 0$ and $\nabla^2 f(x) \succeq 0$ is called a *second-order stationary point* (SOSP). Theorem 1 says a local minimizer must be a stationary point if *f* is continuously differentiable, and it must be a SOSP if *f* is twice continuously differentiable.

Proof of Theorem **1**. Part 1: Suppose for the purpose of contradiction (f.p.o.c.) that $\nabla f(x^*) \neq 0$, but x^* is a local minimizer. Apply Part 2 of Taylor's Theorem with $y = x^* - \alpha \nabla f(x^*), x = x^*, \alpha > 0$:

$$f\left(x^{*} - \alpha \nabla f(x^{*})\right) = f(x^{*}) - \alpha \left\langle \nabla f\left(x^{*} - \gamma \alpha \nabla f(x^{*})\right), \nabla f(x^{*})\right\rangle$$

for some $\gamma \in (0, 1)$. Note that if α were equal to 0, then

$$-\left\langle \nabla f\left(x^{*}\right),\nabla f\left(x^{*}\right)\right\rangle =-\left\| \nabla f\left(x^{*}\right)\right\|_{2}^{2}.$$

Since ∇f is continuous by assumption, for all sufficiently small $\alpha > 0$, it holds that

$$-\langle
abla f(x^* - \gamma lpha
abla f(x^*)),
abla f(x^*)
angle \leq -rac{1}{2} \|
abla f(x^*) \|_2^2,$$

hence

$$f(x^* - \alpha \nabla f(x^*)) \le f(x^*) - \frac{\alpha}{2} \underbrace{\|\nabla f(x^*)\|_2^2}_{>0 \text{ by assumption}} < f(x^*).$$

Therefore, x^* cannot be a local minimizer, a contradiction.

Part 2: Suppose f.p.o.c. that $\nabla^2 f(x^*)$ has a negative eigenvalue $-\lambda$, where $\lambda > 0$. Then, there exists $\theta \in \mathbb{R}^d$, $\|\theta\|_2 = 1$ such that

$$^{\top}\nabla^2 f(x^*)\theta = -\lambda.$$

Using Part 4 of Taylor's Theorem with $x = x^*$, $y = x^* + \alpha \theta$, $\alpha > 0$:

$$f(x^* + \alpha\theta) = f(x^*) + \left\langle \underbrace{\nabla f(x^*)}_{\text{by part 1}}, \alpha\theta \right\rangle + \frac{\alpha^2}{2} \theta^\top \nabla^2 f(x^* + \gamma \alpha\theta)\theta$$

for some $\gamma \in (0, 1)$. As $\nabla^2 f$ is continuous, for all sufficiently small $\alpha > 0$, it holds that

$$\theta^{\top} \nabla^2 f(x^* + \gamma \alpha \theta) \theta \leq -\frac{\lambda}{2},$$

hence

$$f(x^* + \alpha \theta) \le f(x^*) - \frac{1}{4} \alpha^2 \lambda < f(x^*).$$

Therefore, x^* cannot be a local minimizer, a contradiction.

2.1.1 An alternative proof

From calculus, we have the derivative tests for characterizing critical points of **1D** functions. Taking these 1D results as given, we can use them to prove the multivariate results in Theorem **1**.

Part 1: Define the 1-D function $\phi(\alpha) = f(x^* - \alpha \nabla f(x^*))$. If x^* is a local minimizer of f, then 0 is a local minimizer of ϕ , then $\phi'(0) = 0$ by Fermat's Theorem. But

$$\phi'(\alpha) = \langle \nabla f(x^* - \alpha \nabla f(x^*)), -\nabla f(x^*) \rangle,$$

$$\phi'(0) = - \|\nabla f(x^*)\|_2^2,$$

so we must have $\nabla f(x^*) = 0$.

Part 2: Fix an arbitrary $\theta \in \mathbb{R}^d$, define $\phi_{\theta}(\alpha) = f(x^* + \alpha \theta)$. Use 2nd derivative test on ϕ_{θ} and $\phi'_{\theta}(0) = 0$.

2.2 Sufficient condition for optimality

Theorem 2 (Second-order sufficient condition). Let $f : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ be twice continuously differentiable and assume that for some $x^* \in \text{dom}(f)$,

$$abla f(x^*) = 0$$
 and
 $abla^2 f(x^*) \succ 0.$

Then x^* is a strict local minimizer of f.

Proof. Let \mathcal{B} be a ball centered at x^* and of radius ρ that is sufficiently small so that

$$abla^2 f(x^* + p) \succcurlyeq \epsilon I, \qquad \forall p : \|p\|_2 \le
ho$$

for some $\epsilon > 0$. (Such a ball must exist because $\nabla^2 f(x^*) \succ 0$ and $\nabla^2 f$ is continuous).

Apply Part 4 of Taylor's Theorem with $x = x^*$, $y = x^* + p$ and arbitrary p with $||p||_2 \le \rho$: for some $\gamma \in (0, 1)$,

$$\begin{aligned} f(x^* + p) &= f(x^*) + \langle \nabla f x^* \rangle, p \rangle + \frac{1}{2} p^\top \nabla^2 f(x^* + \gamma p) p \\ &= f(x^*) + 0 + \frac{1}{2} p^\top \nabla^2 f(x^* + \gamma p) p \\ &\geq f(x^*) + \frac{1}{2} \cdot \epsilon \cdot \|p\|_2^2 \\ &> f(x^*) \qquad \text{if } \|p\|_2 \neq 0, \end{aligned}$$
 by assumption

so x^* is a strict local minimizer.

Remark 3. We notice that there is a gap between the conditions in last two theorems. The condition $\nabla f(x^*) = 0$, $\nabla^2 f(x^*) \ge 0$ in Theorem 1 is necessary but not sufficient: it is possible that a point x satisfies this condition but is not a local min (e.g., $f(x) = x^3$ and x = 0). The condition $\nabla f(x^*) = 0$, $\nabla^2 f(x^*) \ge 0$ in Theorem 2 is sufficient but not necessary: it is possible that a local minimizer x^* has $\nabla^2 f(x^*) = 0$ (e.g., $f(x) = x^4$ and $x^* = 0$). In general, it is hard to check whether a point x is a local min, even for smooth unconstrained problems. For example, consider the function

$$f(x) = (x_1^2, x_2^2, \dots, x_d^2) D(x_1^2, x_2^2, \dots, x_d^2)^{\top},$$

which is a degree-4 polynomial in x. It is NP hard to decide whether x = 0 is a local min (by reduction from Subset Sum; Murty-Kabadi 1987),

Remark 4. Also, Theorem 2 only guarantees *local* optimality, not global optimality.

Appendices

Lemma 3. Let $f : \mathbb{R}^d \to \mathbb{R}$ be a continuously differentiable function. If it holds that

$$|f(y) - f(x) - \langle \nabla f(x), y - x \rangle| \le \frac{L}{2} \|y - x\|_2^2, \quad \text{for all } x, y \in \mathbb{R}^d, \tag{4}$$

then f *is an* L*-smooth function* $w.r.t. \|\cdot\|_2$.

Proof. Let $x, y \in \mathbb{R}^d$ be arbitrary and $p \in \mathbb{R}^d$ be chosen later. Under the assumption we have the upper bound

$$\rho := f(y+p) - f(x) + f(x-p) - f(y)$$

$$\leq \langle \nabla f(x), y+p-x \rangle + \frac{L}{2} \|y+p-x\|_{2}^{2} + \langle \nabla f(y), x-p-y \rangle + \frac{L}{2} \|x-p-y\|_{2}^{2}$$

$$= - \langle \nabla f(x) - \nabla f(y), x-y-p \rangle + L \|x-y-p\|_{2}^{2}$$

and the lower bound

$$\rho = f(y+p) - f(y) + f(x-p) - f(x)$$

$$\geq \langle \nabla f(y), p \rangle - \frac{L}{2} \|p\|_2^2 + \langle \nabla f(x), -p \rangle - \frac{L}{2} \|p\|_2^2$$

$$= - \langle \nabla f(x) - \nabla f(y), p \rangle - L \|p\|_2^2.$$

Combining the two bounds and rearranging, we get

$$\langle \nabla f(x) - \nabla f(y), x - y - 2p \rangle \leq L \|x - y - p\|_{2}^{2} + L \|p\|_{2}^{2}.$$

Taking $p = \frac{1}{2} \left[x - y - \frac{1}{L} \left(\nabla f(x) - \nabla f(y) \right) \right]$ gives

$$\frac{1}{L} \|\nabla f(x) - \nabla f(y)\|_{2}^{2} \leq \frac{L}{4} \left\| x - y + \frac{1}{L} \left(\nabla f(x) - \nabla f(y) \right) \right\|_{2}^{2} + \frac{L}{4} \left\| x - y - \frac{1}{L} \left(\nabla f(x) - \nabla f(y) \right) \right\|_{2}^{2}$$

$$= \frac{L}{2} \|x - y\|^{2} + \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_{2}^{2},$$

Rearranging terms gives

$$\|\nabla f(x) - \nabla f(y)\|_2^2 \le L^2 \|x - y\|_2^2$$

which is the definition of *L*-smoothness.

Remark 5. The condition (4) is equivalent to

$$|\langle \nabla f(x) - \nabla f(y), x - y \rangle| \le L ||x - y||_2^2$$
 for all $x, y \in \mathbb{R}^d$.

Proof left as exercise.

Remark 6. Suppose that *f* is a convex function satisfying the upper bound

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle \le \frac{L}{2} \|y - x\|_2^2$$
 for all $x, y \in \mathbb{R}^d$

or equivalently

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \le L ||x - y||_2^2$$
 for all $x, y \in \mathbb{R}^d$.

Then f satisfies (4) and hence f is L-smooth.