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Lecture 4: Smooth Functions and Optimality Conditions

Yudong Chen

In this lecture, we use Taylor’s Theorem to characterize smooth functions and their local min-
ima. In particular, we derive necessary/sufficient optimality conditions for smooth unconstrained
optimization.

1 Properties of smooth functions

Recall: f is called L-smooth w.r.t. ||-|| if
Vx,y € dom(f) : [[VF(x) = Vf(y)ll. < Lllx—yll.
Lemma 1. Let f : R? — R be an L-smooth function w.r.t. ||-|| .Then, ¥x,y € dom(f):
L
fy) < @) +(VF@)y = 2) + 5 ly = x|,

Fy) 2 F) + (VF ),y 2 — 2 ly — .

Proof. We prove the first inequality; second one left as exercise. From Part 1 of Taylor theorem
(Theorem 1 in Lecture 3):

F) = ) = (V(x),y =)
1 1
= [ (Vf =)y =2 dt— [ (V) y-x)de

= [V ety =) - VF )y - 0y i

1

< [ IVF Gt tly = 20) = VA lly — ] de Holder
1

g/ LtHy—tzdt Smoothness
0

= S ly—xIP.

Remark 1. In fact, the condition in Lemma 1 is equivalent to L-smoothness; see Lemma 3.

Recall the Lowner order: For symmetric matrices A and B,
AZzB<= A—-B>=0<= A—-Bisps.d.

In particular,
al S A bl <= a < A(A) <b,Vi

where A1(A) < --- < A;(A) are the eigenvalues of A.
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Lemma 2. Suppose that f : R? — R is twice continuously differentiable on dom(f). Then f is L-smooth
w.r.t. |||, if and only if
—LI < V?f(x) < LI, Vx € dom(f).

To give the proof, we use the matrix operator norm:
H AXHZ for symmetric A

[All, == sup
xilxlp20 1%l

ax [A;j(A)].

Then by definition:
[Ax]l, < [[Ally [|x],- (1)

Proof. = direction: Suppose that f is L smooth. Want to show: V?f(x) < LI. (—LI < V?f(x)
left as exercise.)

Letx € dom(f),x+ap € dom(f), a > 0. From Part 4 of Taylor theorem (Theorem 1 in Lecture
3):

Fx+ap) = F()+ (V1) ap) + 5 pT V2F (x + 7ap) p @

for some y € (0,1). From Lemma 1:

L
fx+ap) < f(x)+(Vf(x),ap) +§“2||PH§- 3)
Combining (3) and (2):
L
?ZZPT VZf(x+yap) p < EJ/ZHPH% :
| ——
—V2f(x)asa—0

Taking the limit « — 0, we get p' V2f(x)p < L||p||3. Since p is arbitrary, we have V2f(x) < LI.
<= direction: Suppose that Vx : —LI < V2f(x) < LI <= ||V*f(x)||, < L. Want to show:

Vx,y € dom(f) :|[VF(x) =Vf({y)lly < Lx—yll,-
From Part 3 of Taylor theorem: Vx,y € dom(f):

IVF0) = T5@l, = | [ 92F (e 1ty = 0) (- 00

2

1
<[9P G+ 1y = 00) (v = )] Jensen’s
1
< [V e+ ty = )] Ny — ol e by (1)
1
< [ Llly—xldt
=Ly — x|,
O
2 Characterizing minima of smooth functions
In this part, we consider unconstrained optimization, that is, X = R? in the problem
min f(x) (P)

xeX
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2.1 Necessary conditions for optimality
Theorem 1.

1. (First-order necessary condition) Suppose that f : RY — R U {+oo} is continuously differentiable.
If x* is a local minimizer of f, then V f(x*) = 0.

2. (Second-order necessary condition) Suppose that f : R? — R U {+oo} is twice continuously differ-
entiable. Then in additional to 1), V*f(x*) 3= 0.

Remark 2. A point x satisfying V f(x) = 0 is called a (first-order) stationary point of f. A point x
satisfying Vf(x) = 0 and V?f(x) 3= 0 is called a second-order stationary point (SOSP). Theorem 1
says a local minimizer must be a stationary point if f is continuously differentiable, and it must
be a SOSP if f is twice continuously differentiable.

Proof of Theorem 1. Part 1: Suppose for the purpose of contradiction (f.p.o.c.) that V f(x*) # 0, but
x* is a local minimizer. Apply Part 2 of Taylor’s Theorem with y = x* —aV f(x*), x = x*, & > 0:

f=aVf(xT) = f(x") —a(Vf (" =7aVf(xT)), V()

for some 7y € (0,1). Note that if « were equal to 0, then

—(Vf(x*), Vf(x*)) = = [IVF(x)]]3.

Since V f is continuous by assumption, for all sufficiently small « > 0, it holds that

—(VF (¢ =70V F(x), V() < 3 IVF)IE,

hence
o

fO—aViT) < f(7) = 5
>0 by assumption

Therefore, x* cannot be a local minimizer, a contradiction.
Part 2: Suppose f.p.o.c. that V2f(x*) has a negative eigenvalue —A, where A > 0. Then, there
exists 0 € R?,||0||, = 1 such that
0"V2f(x*)8 = —A.

Using Part 4 of Taylor’s Theorem with x = x*, y = x* +af, a > 0:
2
FOx* +a) = f(x*) + (ZEcT, af) + %GTvzf(x* + ya0)8

——
by part 1

for some 7y € (0,1). As V2f is continuous, for all sufficiently small & > 0, it holds that

GTVZf(x* + ya6)o < —%,

hence 1
f(x*+ab) < f(x*) — szx\ < f(x*).

Therefore, x* cannot be a local minimizer, a contradiction. O
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2.1.1 An alternative proof

From calculus, we have the derivative tests for characterizing critical points of 1D functions. Tak-
ing these 1D results as given, we can use them to prove the multivariate results in Theorem 1.

Part 1: Define the 1-D function ¢(«) = f (x* —aV f(x*)).If x* is a local minimizer of f, then 0
is a local minimizer of ¢, then ¢'(0) = 0 by Fermat’s Theorem. But

¢ () = (Vf (x* —aVf(x), = Vf(x)),
¢'(0) = — [|[Vf(x")]3,

so we must have V f(x*) = 0.
Part 2: Fix an arbitrary 6 € R?, define ¢g(a) = f(x* + ). Use 2nd derivative test on ¢ and

¢5(0) = 0.
2.2 Sufficient condition for optimality

Theorem 2 (Second-order sufficient condition). Let f : RY — R U {+oco} be twice continuously
differentiable and assume that for some x* € dom(f),

Vf(x*)=0  and
V2 f(x*) = 0.
Then x* is a strict local minimizer of f.
Proof. Let B be a ball centered at x* and of radius p that is sufficiently small so that
Vif(x+p)=el,  Vpillpll, <p

for some € > 0. (Such a ball must exist because V2f(x*) = 0 and V?f is continuous).
Apply Part 4 of Taylor’s Theorem with x = x*, y = x* + p and arbitrary p with ||p||, < p: for
some v € (0,1),

fix"+p) = f(x") + (2T p) + %PTsz(X* +p)p
=f(x*)+0+ %PTVZf(X* +9p)p by assumption

* 1 2
> fx) + 5 e Pl
> f(x*)  if[[pll,#0,
so x* is a strict local minimizer. O

Remark 3. We notice that there is a gap between the conditions in last two theorems. The condition
V£(x*) =0,V2f(x*) 3= 0 in Theorem 1 is necessary but not sufficient: it is possible that a point x
satisfies this condition but is not a local min (e.g., f(x) = x® and x = 0). The condition Vf(x*) =
0, V2f(x*) = 0 in Theorem 2 is sufficient but not necessary: it is possible that a local minimizer x*
has V2f(x*) = 0 (e.g., f(x) = x* and x* = 0). In general, it is hard to check whether a point x is a
local min, even for smooth unconstrained problems. For example, consider the function

f(x) = (x34,3,...,3)D(x3,%3,...,x3) 7,

which is a degree-4 polynomial in x. It is NP hard to decide whether x = 0 is a local min (by
reduction from Subset Sum; Murty-Kabadi 1987),
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Remark 4. Also, Theorem 2 only guarantees local optimality, not global optimality.

Appendices

Lemma 3. Let f : R? — R be a continuously differentiable function. If it holds that

L
Fy) = ) = (VF()y =) < 5 ly—xlly, forall xye R, 4)
then f is an L-smooth function w.r.t. ||-||, .

Proof. Let x,y € R be arbitrary and p € R? be chosen later. Under the assumption we have the
upper bound

p:=fy+p)—f)+flx—p)—fy)
<(VFy+p -2+ 5 ly+p— 2B+ (V@) x—p—y) + 2 x—p— 2
= —(Vf(x) = Vf)x—y—p)+L|x—y—pl;
and the lower bound
p=fly+p)—fly)+flx—p) —f(x)
> (Vf (), p) 5 P13+ (V£ —p) = 5 Pl
= — (Vf(x) = Vf(y),p) —L|pll5-
Combining the two bounds and rearranging, we get
(Vf(x) = Vf(y),x =y —=2p) < Llx—y—pll3 + Llpl3-
Taking p = 3 [x —y — 1 (Vf(x) = Vf(y))] gives

Ly - e < byt L v - vrm)|
A =gl —y+7 (V)= VIQY))

2

ﬁi Xy~ 1 (Vf(x) - Vf())

2

. L 2 1 2

=5 I =yl"+ 57 V() = VW)l
Rearranging terms gives

IVF(x) = VFW)5 < L |lx —yll3,
which is the definition of L-smoothness. O
Remark 5. The condition (4) is equivalent to
[(Vf(x) = Vfy),x—y)| <L|x—yll; forallxye R

Proof left as exercise.
Remark 6. Suppose that f is a convex function satisfying the upper bound

L
f) = f(x) = (Vf(x),y—x) < 5 |y — x| forallxy€e R’
or equivalently
(Vf(x) = Vf(y),x—y) <L|x—yl; forallxye R
Then f satisfies (4) and hence f is L-smooth.
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