
UW-Madison CS/ISyE/Math/Stat 726 Spring 2024

Lecture 4: Smooth Functions and Optimality Conditions

Yudong Chen

In this lecture, we use Taylor’s Theorem to characterize smooth functions and their local min-
ima. In particular, we derive necessary/sufficient optimality conditions for smooth unconstrained
optimization.

1 Properties of smooth functions

Recall: f is called L-smooth w.r.t. ∥·∥ if

∀x, y ∈ dom( f ) : ∥∇ f (x)−∇ f (y)∥∗ ≤ L ∥x − y∥ .

Lemma 1. Let f : Rd → R̄ be an L-smooth function w.r.t. ∥·∥ .Then, ∀x, y ∈ dom( f ):

f (y) ≤ f (x) + ⟨∇ f (x), y − x⟩+ L
2
∥y − x∥2 ,

f (y) ≥ f (x) + ⟨∇ f (x), y − x⟩ − L
2
∥y − x∥2 .

Proof. We prove the first inequality; second one left as exercise. From Part 1 of Taylor theorem
(Theorem 1 in Lecture 3):

f (y)− f (x)− ⟨∇ f (x), y − x⟩

=
∫ 1

0
⟨∇ f (x + t(y − x)) , y − x⟩dt −

∫ 1

0
⟨∇ f (x), y − x⟩dt

=
∫ 1

0
⟨∇ f (x + t(y − x))−∇ f (x), y − x⟩dt

≤
∫ 1

0
∥∇ f (x + t(y − x))−∇ f (x)∥∗ ∥y − x∥dt Holder

≤
∫ 1

0
Lt ∥y − x∥2 dt Smoothness

=
L
2
∥y − x∥2 .

Remark 1. In fact, the condition in Lemma 1 is equivalent to L-smoothness; see Lemma 3.
Recall the Lowner order: For symmetric matrices A and B,

A ≽ B ⇐⇒ A − B ≽ 0 ⇐⇒ A − B is p.s.d.

In particular,
aI ≼ A ≼ bI ⇐⇒ a ≤ λi(A) ≤ b, ∀i

where λ1(A) ≤ · · · ≤ λd(A) are the eigenvalues of A.
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Lemma 2. Suppose that f : Rd → R̄ is twice continuously differentiable on dom( f ). Then f is L-smooth
w.r.t. ∥·∥2 if and only if

−LI ≼ ∇2 f (x) ≼ LI, ∀x ∈ dom( f ).

To give the proof, we use the matrix operator norm:

∥A∥2 := sup
x:∥x∥2 ̸=0

∥Ax∥2
∥x∥2

for symmetric A
= max

i
|λi(A)| .

Then by definition:
∥Ax∥2 ≤ ∥A∥2 ∥x∥2 . (1)

Proof. =⇒ direction: Suppose that f is L smooth. Want to show: ∇2 f (x) ≼ LI. (−LI ≼ ∇2 f (x)
left as exercise.)

Let x ∈ dom( f ), x + αp ∈ dom( f ), α > 0. From Part 4 of Taylor theorem (Theorem 1 in Lecture
3):

f (x + αp) = f (x) + ⟨∇ f (x), αp⟩+ α2

2
p⊤∇2 f (x + γαp) p (2)

for some γ ∈ (0, 1). From Lemma 1:

f (x + αp) ≤ f (x) + ⟨∇ f (x), αp⟩+ L
2

α2 ∥p∥2
2 . (3)

Combining (3) and (2):

�
�
�α2

2
p⊤ ∇2 f (x + γαp)︸ ︷︷ ︸

→∇2 f (x) as α→0

p ≤ L
�2
��α

2 ∥p∥2
2 .

Taking the limit α → 0, we get p⊤∇2 f (x)p ≤ L ∥p∥2
2 . Since p is arbitrary, we have ∇2 f (x) ≼ LI.

⇐= direction: Suppose that ∀x : −LI ≼ ∇2 f (x) ≼ LI ⇐⇒
∥∥∇2 f (x)

∥∥
2 ≤ L. Want to show:

∀x, y ∈ dom( f ) : ∥∇ f (x)−∇ f (y)∥2 ≤ L ∥x − y∥2 .
From Part 3 of Taylor theorem: ∀x, y ∈ dom( f ):

∥∇ f (y)−∇ f (x)∥2 =

∥∥∥∥∫ 1

0
∇2 f (x + t(y − x)) (y − x)dt

∥∥∥∥
2

≤
∫ 1

0

∥∥∇2 f (x + t(y − x)) (y − x)dt
∥∥

2 Jensen’s

≤
∫ 1

0

∥∥∇2 f (x + t(y − x))
∥∥

2 ∥y − x∥2 dt by (1)

≤
∫ 1

0
L ∥y − x∥2 dt

= L ∥y − x∥2 .

2 Characterizing minima of smooth functions

In this part, we consider unconstrained optimization, that is, X = Rd in the problem

min
x∈X

f (x) (P)
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2.1 Necessary conditions for optimality

Theorem 1.

1. (First-order necessary condition) Suppose that f : Rd → R ∪ {+∞} is continuously differentiable.
If x∗ is a local minimizer of f , then ∇ f (x∗) = 0.

2. (Second-order necessary condition) Suppose that f : Rd → R ∪ {+∞} is twice continuously differ-
entiable. Then in additional to 1), ∇2 f (x∗) ≽ 0.

Remark 2. A point x satisfying ∇ f (x) = 0 is called a (first-order) stationary point of f . A point x
satisfying ∇ f (x) = 0 and ∇2 f (x) ≽ 0 is called a second-order stationary point (SOSP). Theorem 1
says a local minimizer must be a stationary point if f is continuously differentiable, and it must
be a SOSP if f is twice continuously differentiable.

Proof of Theorem 1. Part 1: Suppose for the purpose of contradiction (f.p.o.c.) that ∇ f (x∗) ̸= 0, but
x∗ is a local minimizer. Apply Part 2 of Taylor’s Theorem with y = x∗ − α∇ f (x∗), x = x∗, α > 0:

f (x∗ − α∇ f (x∗)) = f (x∗)− α ⟨∇ f (x∗ − γα∇ f (x∗)) ,∇ f (x∗)⟩

for some γ ∈ (0, 1). Note that if α were equal to 0, then

− ⟨∇ f (x∗) ,∇ f (x∗)⟩ = −∥∇ f (x∗)∥2
2 .

Since ∇ f is continuous by assumption, for all sufficiently small α > 0, it holds that

− ⟨∇ f (x∗ − γα∇ f (x∗)) ,∇ f (x∗)⟩ ≤ −1
2
∥∇ f (x∗)∥2

2 ,

hence
f (x∗ − α∇ f (x∗)) ≤ f (x∗)− α

2
∥∇ f (x∗)∥2

2︸ ︷︷ ︸
>0 by assumption

< f (x∗).

Therefore, x∗ cannot be a local minimizer, a contradiction.
Part 2: Suppose f.p.o.c. that ∇2 f (x∗) has a negative eigenvalue −λ, where λ > 0. Then, there

exists θ ∈ Rd, ∥θ∥2 = 1 such that
θ⊤∇2 f (x∗)θ = −λ.

Using Part 4 of Taylor’s Theorem with x = x∗, y = x∗ + αθ, α > 0:

f (x∗ + αθ) = f (x∗) +
〈
����∇ f (x∗)︸ ︷︷ ︸
by part 1

, αθ
〉
+

α2

2
θ⊤∇2 f (x∗ + γαθ)θ

for some γ ∈ (0, 1). As ∇2 f is continuous, for all sufficiently small α > 0, it holds that

θ⊤∇2 f (x∗ + γαθ)θ ≤ −λ

2
,

hence
f (x∗ + αθ) ≤ f (x∗)− 1

4
α2λ < f (x∗).

Therefore, x∗ cannot be a local minimizer, a contradiction.
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2.1.1 An alternative proof

From calculus, we have the derivative tests for characterizing critical points of 1D functions. Tak-
ing these 1D results as given, we can use them to prove the multivariate results in Theorem 1.

Part 1: Define the 1-D function ϕ(α) = f (x∗ − α∇ f (x∗)) . If x∗ is a local minimizer of f , then 0
is a local minimizer of ϕ, then ϕ′(0) = 0 by Fermat’s Theorem. But

ϕ′(α) = ⟨∇ f (x∗ − α∇ f (x∗)) ,−∇ f (x∗)⟩ ,

ϕ′(0) = −∥∇ f (x∗)∥2
2 ,

so we must have ∇ f (x∗) = 0.
Part 2: Fix an arbitrary θ ∈ Rd, define ϕθ(α) = f (x∗ + αθ). Use 2nd derivative test on ϕθ and

ϕ′
θ(0) = 0.

2.2 Sufficient condition for optimality

Theorem 2 (Second-order sufficient condition). Let f : Rd → R ∪ {+∞} be twice continuously
differentiable and assume that for some x∗ ∈ dom( f ),

∇ f (x∗) = 0 and

∇2 f (x∗) ≻ 0.

Then x∗ is a strict local minimizer of f .

Proof. Let B be a ball centered at x∗ and of radius ρ that is sufficiently small so that

∇2 f (x∗ + p) ≽ ϵI, ∀p : ∥p∥2 ≤ ρ

for some ϵ > 0. (Such a ball must exist because ∇2 f (x∗) ≻ 0 and ∇2 f is continuous).
Apply Part 4 of Taylor’s Theorem with x = x∗, y = x∗ + p and arbitrary p with ∥p∥2 ≤ ρ: for

some γ ∈ (0, 1),

f (x∗ + p) = f (x∗) +
〈
����∇ f x∗), p

〉
+

1
2

p⊤∇2 f (x∗ + γp)p

= f (x∗) + 0 +
1
2

p⊤∇2 f (x∗ + γp)p by assumption

≥ f (x∗) +
1
2
· ϵ · ∥p∥2

2

> f (x∗) if ∥p∥2 ̸= 0,

so x∗ is a strict local minimizer.

Remark 3. We notice that there is a gap between the conditions in last two theorems. The condition
∇ f (x∗) = 0,∇2 f (x∗) ≽ 0 in Theorem 1 is necessary but not sufficient: it is possible that a point x
satisfies this condition but is not a local min (e.g., f (x) = x3 and x = 0). The condition ∇ f (x∗) =
0,∇2 f (x∗) ≻ 0 in Theorem 2 is sufficient but not necessary: it is possible that a local minimizer x∗

has ∇2 f (x∗) = 0 (e.g., f (x) = x4 and x∗ = 0). In general, it is hard to check whether a point x is a
local min, even for smooth unconstrained problems. For example, consider the function

f (x) = (x2
1, x2

2, . . . , x2
d)D(x2

1, x2
2, . . . , x2

d)
⊤,

which is a degree-4 polynomial in x. It is NP hard to decide whether x = 0 is a local min (by
reduction from Subset Sum; Murty-Kabadi 1987),
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Remark 4. Also, Theorem 2 only guarantees local optimality, not global optimality.

Appendices
Lemma 3. Let f : Rd → R be a continuously differentiable function. If it holds that

| f (y)− f (x)− ⟨∇ f (x), y − x⟩| ≤ L
2
∥y − x∥2

2 , for all x,y∈ Rd, (4)

then f is an L-smooth function w.r.t. ∥·∥2 .

Proof. Let x, y ∈ Rd be arbitrary and p ∈ Rd be chosen later. Under the assumption we have the
upper bound

ρ := f (y + p)− f (x) + f (x − p)− f (y)

≤ ⟨∇ f (x), y + p − x⟩+ L
2
∥y + p − x∥2

2 + ⟨∇ f (y), x − p − y⟩+ L
2
∥x − p − y∥2

2

=− ⟨∇ f (x)−∇ f (y), x − y − p⟩+ L ∥x − y − p∥2
2

and the lower bound

ρ = f (y + p)− f (y) + f (x − p)− f (x)

≥ ⟨∇ f (y), p⟩ − L
2
∥p∥2

2 + ⟨∇ f (x),−p⟩ − L
2
∥p∥2

2

= − ⟨∇ f (x)−∇ f (y), p⟩ − L ∥p∥2
2 .

Combining the two bounds and rearranging, we get

⟨∇ f (x)−∇ f (y), x − y − 2p⟩ ≤ L ∥x − y − p∥2
2 + L ∥p∥2

2 .

Taking p = 1
2

[
x − y − 1

L (∇ f (x)−∇ f (y))
]

gives

1
L
∥∇ f (x)−∇ f (y)∥2

2 ≤ L
4

∥∥∥∥x − y +
1
L
(∇ f (x)−∇ f (y))

∥∥∥∥2

2
+

L
4

∥∥∥∥x − y − 1
L
(∇ f (x)−∇ f (y))

∥∥∥∥2

2

=
L
2
∥x − y∥2 +

1
2L

∥∇ f (x)−∇ f (y)∥2
2 ,

Rearranging terms gives
∥∇ f (x)−∇ f (y)∥2

2 ≤ L2 ∥x − y∥2
2 ,

which is the definition of L-smoothness.

Remark 5. The condition (4) is equivalent to

|⟨∇ f (x)−∇ f (y), x − y⟩| ≤ L ∥x − y∥2
2 for all x,y∈ Rd.

Proof left as exercise.
Remark 6. Suppose that f is a convex function satisfying the upper bound

f (y)− f (x)− ⟨∇ f (x), y − x⟩ ≤ L
2
∥y − x∥2

2 for all x,y∈ Rd

or equivalently
⟨∇ f (x)−∇ f (y), x − y⟩ ≤ L ∥x − y∥2

2 for all x,y∈ Rd.

Then f satisfies (4) and hence f is L-smooth.
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