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Lecture 5: Minima of Convex Functions; Algorithmic Setup

Yudong Chen

1 Minima of convex functions

Consider the constrained problem
min
x∈X

f (x). (P)

Recall definition of convex functions.

Theorem 1. Consider the problem (P). Suppose f is convex, and X is convex, closed and non-empty. Then:

1. Any local solution to (P) is also a global solution.

2. The set of global solutions to (P) is convex.

Proof. Part 1: Suppose f.p.o.c. that x∗ is a local but not a global solution. Then there exists x̄ ∈ X
such that f (x̄) < f (x∗). As X is convex, for all α ∈ (0, 1),

(1− α)x∗ + αx̄ ∈ X .

As f is convex, for all α ∈ (0, 1):

f ((1− α)x∗ + αx̄) ≤ (1− α) f (x∗) + α f (x̄) < f (x∗).

Hence every neighborhood of x∗ must include a point (1− α)x∗ + αx̄ for some α > 0 that will
have a strictly lower function value. So x∗ cannot be a local solution, a contradiction.

Part 2: Let x∗, x̄ ∈ X be any two global solutions.
X is convex =⇒ (1− α)x∗ + αx̄ ∈ X .
f is convex =⇒

f ((1− α)x∗ + αx̄) ≤ (1− α) f (x∗) + α f (x̄) = f (x∗) = f (x̄)

=⇒ f ((1− α)x∗ + αx̄) = f (x∗), so (1− α)x∗ + αx̄ is also a global solution =⇒ the set of global
solution is convex.

1.1 Continuously differentiable convex functions

Theorem 2 (Equivalent characterization of convexity). The following are true.

1. Let f : Rd → R̄ be continuously differentiable. The function f is convex if and only if

∀x, y : f (y) ≥ f (x) + 〈∇ f (x), y− x〉 . (1)

(A picture. From local to global.)
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2. Let f : Rd → R̄ be twice continuously differentiable. The function f is convex if and only if

∀x : ∇2 f (x) < 0.

Proof. Part 1, convexity =⇒ (1): By convexity of f , for any α ∈ (0, 1) :

f ((1− α)x + αy) ≤ (1− α) f (x) + α f (y)
rearranging

=⇒ f (y)− (x) ≥ f (x + α(y− x))− f (x)
α

Taylor’s
=

〈∇ f (x), α(y− x)〉+ o(α)
α

.

Taking α→ 0 gives (1)
Part 1, (1) =⇒ convexity: Take any x, y and α ∈ (0, 1). Set z = (1− α)x + αy. Apply (1) to x, z

and to y, z:

f (x) ≥ f (z) + α 〈∇ f (z), x− y〉 , (2)
f (y) ≥ f (z) + (1− α) 〈∇ f (z), y− x〉 . (3)

(2)×(1− α)+(3)×α gives
(1− α) f (x) + α f (y) ≥ f (z),

which implies convexity of f .
Part 2: By Taylor’s theorem, for all α > 0, x ∈ Rd:

f (x + αu) = f (x) + α 〈∇ f (x), u〉+ 1
2

α2u>∇2 f (x + γαu)u, for some γ ∈ (0, 1).

• If ∇2 f (·) < 0, then the above equation implies f (x + αu) = f (x) + α 〈∇ f (x), u〉 and hence
convexity.

• If f is convex: the above equation with (1) imply u>∇2 f (x + γαu)u ≥ 0. Taking α→ 0 gives
∇2 f (·) < 0 since x, u are arbitrary,

(See Wright-Recht, Lemma 2.9 for a complete proof.)

Theorem 3 (Sufficient condition for global optimality). Consider the problem (P), where f is continu-
ously differentiable and convex. If x∗ ∈ X and ∇ f (x∗) = 0, then x∗ is a global minimizer of f .

Proof. Use Part 1 of Theorem 2:

∀x : f (x) ≥ f (x∗) + 〈����∇ f (x∗), x− x∗〉 = f (x∗).

Remark 1. Theorem 3 holds for both unconstrained (i.e.,X = Rd) and constrained problems. Using
terminology from last time, x∗ being a stationary point is sufficient for global optimality. For
unconstrained problem, this is also necessary (Lecture 4, Theorem 1). For constrained problem,
this may not be necessary (example).
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2 Strongly convex functions

We use Euclidean norm ‖·‖2 in this section.

Definition 1 (Strong convexity). Given m > 0, we say that f : Rd → R̄ is strongly convex with
modulus/parameter m (or m-strongly convex for short), if

∀x, y ∈ Rd : f ((1− α)x + αy) ≤ (1− α) f (x) + α f (y)− m
2
(1− α)α ‖y− x‖2

2 .

Remark 2. Verify yourself that the above is equivalent to convexity of the function f (x)− m
2 ‖x‖

2
2.

Theorem 4 (Equivalent characterization of strong convexity). The following hold.

1. Suppose f is continuously differentiable. Then f is m-strong convexity if and only if

f (y) ≥ f (x) + 〈∇ f (x), y− x〉+ m
2
‖y− x‖2

2 .

(A picture. Compare with convexity only. Complements L-smoothness.)

2. Suppose f is twice continuously differentiable. Then f is m-strong convexity if and only if

∀x : ∇2 f (x) < mI.

(Compare with L-smoothness)

Proof. Apply Theorem 2 to the function f (x)− m
2 ‖x‖

2
2.

Theorem 5. Suppose that f : Rd → R̄ is continuously differentiable and m-strongly convex for some
m > 0. If x∗ ∈ X satisfies ∇ f (x∗) = 0, then x∗ is the unique global minimizer of f .

Proof. By Part 1 of Theorem 4:

f (x) ≥ f (x∗) + 〈����∇ f (x∗), x− x∗〉+ m
2
‖x− x∗‖2

2︸ ︷︷ ︸
>0 unless x=x∗

.

3 Algorithmic setup

1. First-order oracle:
x −→ oracle −→ f (x),∇ f (x)

2. Second-order oracle:
x −→ oracle −→ f (x),∇ f (x),∇2 f (x)

All algorithms we consider in this course are iterative:

• start with some x0

• at iteration k = 0, 1, 2, . . .

– get oracle answers for xk, choose xk+1
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4 Basic descent methods

Take the form
xk+1 = xk + αk pk, k = 0, 1, . . .

Definition 2. p ∈ Rd is a descent direction for f at x if

f (x + tp) < f (x)

for all sufficiently small t > 0.

Proposition 1. If f is continuously differentiable (in a neighborhood of x), then any p such that 〈−∇ f (x), p〉 >
0 is a descent direction.

Proof. By Taylor’s theorem:

f (x + tp) = f (x) + t 〈∇ f (x + γtp), p〉

for some γ ∈ (0, 1). We know that 〈∇ f (x), p〉 < 0. As ∇ f is continuous, for all sufficiently small
t > 0,

〈∇ f (x + γtp), p〉 < 0,

hence f (x + tp) < f (x).

5 Gradient descent

Any p with 〈−∇ f (x), p〉 > 0 is a descent direction. What would be a good choice? One that
maximizes 〈−∇ f (x), p〉 over some set of p’s.

For example, look at all p with ‖p‖2 = 1. Then

sup
‖p‖2=1

〈−∇ f (x), p〉 = ‖∇ f (x)‖2

attained for p = − ∇ f (x)
‖∇ f (x)‖2

.
That is, try to move in the direction of the negative gradient, −∇ f (x).
“Simplest” descent algorithm:

xk+1 = xk − αk∇ f (xk),

where αk is the step size. Ideally, choose αk small enough so that

f (xk+1) < f (xk)

when ∇ f (xk) 6= 0.
Known as “gradient method”, “gradient descent”, “steepest descent” (w.r.t. the `2 norm).
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