Lecture 5: Minima of Convex Functions; Algorithmic Setup

Yudong Chen

1 Minima of convex functions

Consider the constrained problem

$$\min_{x \in \mathcal{X}} f(x). \tag{P}$$

Recall definition of convex functions.

Theorem 1. Consider the problem (P). Suppose f is convex, and \mathcal{X} is convex, closed and non-empty. Then:

- 1. Any local solution to (P) is also a global solution.
- 2. The set of global solutions to (P) is convex.

Proof. Part 1: Suppose f.p.o.c. that x^* is a local but not a global solution. Then there exists $\bar{x} \in \mathcal{X}$ such that $f(\bar{x}) < f(x^*)$. As \mathcal{X} is convex, for all $\alpha \in (0,1)$,

$$(1-\alpha)x^* + \alpha \bar{x} \in \mathcal{X}.$$

As *f* is convex, for all $\alpha \in (0,1)$:

$$f\left((1-\alpha)x^* + \alpha \bar{x}\right) \le (1-\alpha)f(x^*) + \alpha f(\bar{x}) < f(x^*).$$

Hence every neighborhood of x^* must include a point $(1 - \alpha)x^* + \alpha \bar{x}$ for some $\alpha > 0$ that will have a strictly lower function value. So x^* cannot be a local solution, a contradiction.

Part 2: Let x^* , $\bar{x} \in \mathcal{X}$ be any two global solutions.

$$\mathcal{X}$$
 is convex $\implies (1-\alpha)x^* + \alpha \bar{x} \in \mathcal{X}$.

f is convex \Longrightarrow

$$f((1-\alpha)x^* + \alpha \bar{x}) \le (1-\alpha)f(x^*) + \alpha f(\bar{x}) = f(x^*) = f(\bar{x})$$

 $\implies f\left((1-\alpha)x^* + \alpha \bar{x}\right) = f(x^*)$, so $(1-\alpha)x^* + \alpha \bar{x}$ is also a global solution \implies the set of global solution is convex.

1.1 Continuously differentiable convex functions

Theorem 2 (Equivalent characterization of convexity). *The following are true.*

1. Let $f: \mathbb{R}^d \to \overline{\mathbb{R}}$ be continuously differentiable. The function f is convex if and only if

$$\forall x, y : f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle. \tag{1}$$

(A picture. From local to global.)

2. Let $f: \mathbb{R}^d \to \overline{\mathbb{R}}$ be twice continuously differentiable. The function f is convex if and only if

$$\forall x : \nabla^2 f(x) \succcurlyeq 0.$$

Proof. Part 1, convexity \Longrightarrow (1): By convexity of f, for any $\alpha \in (0,1)$:

$$f\left((1-\alpha)x+\alpha y\right) \leq (1-\alpha)f(x)+\alpha f(y)$$

$$\stackrel{\text{rearranging}}{\Longrightarrow} f(y)-(x) \geq \frac{f\left(x+\alpha(y-x)\right)-f(x)}{\alpha} \stackrel{\text{Taylor's}}{=} \frac{\left\langle \nabla f(x),\alpha(y-x)\right\rangle +o(\alpha)}{\alpha}.$$

Taking $\alpha \to 0$ gives (1)

Part 1, (1) \Longrightarrow convexity: Take any x, y and $\alpha \in (0,1)$. Set $z = (1-\alpha)x + \alpha y$. Apply (1) to x, z and to y, z:

$$f(x) \ge f(z) + \alpha \langle \nabla f(z), x - y \rangle,$$
 (2)

$$f(y) \ge f(z) + (1 - \alpha) \langle \nabla f(z), y - x \rangle. \tag{3}$$

$$(2)\times(1-\alpha)+(3)\times\alpha$$
 gives

$$(1-\alpha)f(x) + \alpha f(y) \ge f(z),$$

which implies convexity of f.

Part 2: By Taylor's theorem, for all $\alpha > 0$, $x \in \mathbb{R}^d$:

$$f(x + \alpha u) = f(x) + \alpha \langle \nabla f(x), u \rangle + \frac{1}{2} \alpha^2 u^{\top} \nabla^2 f(x + \gamma \alpha u) u, \quad \text{for some } \gamma \in (0, 1).$$

- If $\nabla^2 f(\cdot) \geq 0$, then the above equation implies $f(x + \alpha u) = f(x) + \alpha \langle \nabla f(x), u \rangle$ and hence convexity.
- If f is convex: the above equation with (1) imply $u^{\top}\nabla^2 f(x + \gamma \alpha u)u \geq 0$. Taking $\alpha \to 0$ gives $\nabla^2 f(\cdot) \geq 0$ since x, u are arbitrary,

(See Wright-Recht, Lemma 2.9 for a complete proof.)

Theorem 3 (Sufficient condition for global optimality). *Consider the problem* (P), where f is continuously differentiable and convex. If $x^* \in \mathcal{X}$ and $\nabla f(x^*) = 0$, then x^* is a global minimizer of f.

Proof. Use Part 1 of Theorem 2:

$$\forall x: f(x) \ge f(x^*) + \langle \nabla f(x^*), x - x^* \rangle = f(x^*).$$

Remark 1. Theorem 3 holds for both unconstrained (i.e., $\mathcal{X} = \mathbb{R}^d$) and constrained problems. Using terminology from last time, x^* being a stationary point is sufficient for global optimality. For unconstrained problem, this is also necessary (Lecture 4, Theorem 1). For constrained problem, this may not be necessary (example).

2 Strongly convex functions

We use Euclidean norm $\|\cdot\|_2$ in this section.

Definition 1 (Strong convexity). Given m > 0, we say that $f : \mathbb{R}^d \to \overline{\mathbb{R}}$ is *strongly convex* with modulus/parameter m (or m-strongly convex for short), if

$$\forall x, y \in \mathbb{R}^d : f((1-\alpha)x + \alpha y) \le (1-\alpha)f(x) + \alpha f(y) - \frac{m}{2}(1-\alpha)\alpha \|y - x\|_2^2.$$

Remark 2. Verify yourself that the above is equivalent to convexity of the function $f(x) - \frac{m}{2} \|x\|_2^2$.

Theorem 4 (Equivalent characterization of strong convexity). The following hold.

1. Suppose f is continuously differentiable. Then f is m-strong convexity if and only if

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{m}{2} \|y - x\|_2^2.$$

(A picture. Compare with convexity only. Complements L-smoothness.)

2. Suppose f is twice continuously differentiable. Then f is m-strong convexity if and only if

$$\forall x : \nabla^2 f(x) \succcurlyeq mI.$$

(Compare with L-smoothness)

Proof. Apply Theorem 2 to the function $f(x) - \frac{m}{2} ||x||_2^2$.

Theorem 5. Suppose that $f: \mathbb{R}^d \to \bar{\mathbb{R}}$ is continuously differentiable and m-strongly convex for some m > 0. If $x^* \in \mathcal{X}$ satisfies $\nabla f(x^*) = 0$, then x^* is the unique global minimizer of f.

Proof. By Part 1 of Theorem 4:

$$f(x) \ge f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + \underbrace{\frac{m}{2} \|x - x^*\|_2^2}_{>0 \text{ unless } x = x^*}.$$

3 Algorithmic setup

1. First-order oracle:

$$x \longrightarrow \text{oracle} \longrightarrow f(x), \nabla f(x)$$

2. Second-order oracle:

$$x \longrightarrow \text{oracle} \longrightarrow f(x), \nabla f(x), \nabla^2 f(x)$$

All algorithms we consider in this course are iterative:

- start with some x_0
- at iteration $k = 0, 1, 2, \dots$
 - get oracle answers for x_k , choose x_{k+1}

4 Basic descent methods

Take the form

$$x_{k+1} = x_k + \alpha_k p_k, \qquad k = 0, 1, \dots$$

Definition 2. $p \in \mathbb{R}^d$ is a *descent direction* for f at x if

$$f(x+tp) < f(x)$$

for all sufficiently small t > 0.

Proposition 1. *If f is continuously differentiable (in a neighborhood of x), then any p such that* $\langle -\nabla f(x), p \rangle > 0$ *is a descent direction.*

Proof. By Taylor's theorem:

$$f(x+tp) = f(x) + t \langle \nabla f(x+\gamma tp), p \rangle$$

for some $\gamma \in (0,1)$. We know that $\langle \nabla f(x), p \rangle < 0$. As ∇f is continuous, for all sufficiently small t > 0,

$$\langle \nabla f(x + \gamma t p), p \rangle < 0,$$

hence f(x + tp) < f(x).

5 Gradient descent

Any p with $\langle -\nabla f(x), p \rangle > 0$ is a descent direction. What would be a good choice? One that maximizes $\langle -\nabla f(x), p \rangle$ over some set of p's.

For example, look at all p with $||p||_2 = 1$. Then

$$\sup_{\|p\|_2=1} \left\langle -\nabla f(x), p \right\rangle = \|\nabla f(x)\|_2$$

attained for $p = -\frac{\nabla f(x)}{\|\nabla f(x)\|_2}$.

That is, try to move in the direction of the negative gradient, $-\nabla f(x)$.

"Simplest" descent algorithm:

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k),$$

where α_k is the step size. Ideally, choose α_k small enough so that

$$f(x_{k+1}) < f(x_k)$$

when $\nabla f(x_k) \neq 0$.

Known as "gradient method", "gradient descent", "steepest descent" (w.r.t. the ℓ_2 norm).