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Lecture 9–10: Accelerated Gradient Descent

Yudong Chen

In previous lectures, we showed that gradient descent achieves a 1
k convergence rate for smooth

convex functions and a (1 − m
L )

k geometric rate for L-smooth and m-strongly convex functions.
Gradient descent is very greedy: it only uses the gradient ∇ f (xk) at the current point to choose
the next iterate and discards information from past iterates.

It turns out we can do better than gradient descent, achieving a 1
k2 rate and a

(
1 −

√m
L

)k rate
in the two cases above. Both rates are optimal in a precise sense. The algorithms the attain these
rates are known as Nesterov’s accelerated gradient descent (AGD) or Nesterov’s optimal methods.

1 Warm-up: the heavy-ball method

The high level idea of acceleration is adding momentum to the GD update. For example, consider
the update

yk = xk + β (xk − xk−1) , momentum step
xk+1 = yk − α∇ f (xk), gradient step

where we first take a step in the direction (xk − xk−1), which is the momentum carried over from
the previous update, and then take a standard gradient descent step. This is known as Polyak’s
heavy-ball method. The update above is equivalent to a discretization of the second order ODE

ẍ = −a∇ f (x)− bẋ,

which models the motion of a body in a potential field given by f with friction given by b (hence
the name heavy-ball).

It can be shown that for a strongly convex quadratic function f , the heavy-ball method achieves
the accelerated rate

(
1 −

√m
L

)k.1 For non-quadratic functions (e.g., those that are not twice differ-
entiable), theoretical guarantees for heavy-ball method are less clear; in fact, heavy-ball may not
even converge for such functions.

Rather than using the gradient at xk, Nesterov’s AGD uses the gradient at the point yk after the
momentum update:

yk = xk + β (xk − xk−1) , momentum step
xk+1 = yk − α∇ f (yk). "lookahead" gradient step

As we see below, Nesterov’s AGD enjoys convergence guarantees for (strongly) convex functions
beyond quadratics.

1This rate can be proved using elementary eigenvalue analysis similar to that in Wright-Recht Chap 4.2.
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Below is an illustration of the updates of heavy ball method and Nesterov’s AGD:2

2 AGD for smooth and strongly convex f

Suppose f is m-strongly convex and L-smooth. Nesterov’s AGD for minimizing f is given in
Algorithm 1.

Algorithm 1 Nesterov’s AGD, smooth and strongly convex
input: initial x0, strong convexity and smoothness parameters m, L, number of iterations K
initialize: x−1 = x0, α = 1

L , β =
√

L/m−1√
L/m+1

.
for k = 0, 1, . . . K

yk = xk + β (xk − xk−1)
xk+1 = yk − α∇ f (yk)

return xK

Let x∗ be the unique minimizer of f and set f ∗ := f (x∗). By translation of coordinate, we may
assume x∗ = 0 without loss of generality (hence xk = xk − x∗ and yk = yk − x∗). Define κ := L

m
(condition number), ρ2 := 1 − 1√

κ
(contraction factor), uk := 1

L∇ f (yk), and

Vk := f (xk)− f ∗ +
L
2

∥∥xk − ρ2xk−1
∥∥2

2 .

The quantity Vk, viewed a function of (xk, xk−1), is called a Lyapunov/potential function. We will
show Vk+1 ≤ ρ2Vk, hence geometric convergence.

By smoothness and strong convexity:

f (z) + ⟨∇ f (z), w − z⟩+ m
2
∥w − z∥2

2 ≤ f (w) (1)

≤ f (z) + ⟨∇ f (z), w − z⟩+ L
2
∥w − z∥2

2 , ∀w, z (2)

2Credit: Mitliagkas’ notes
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It follows that

Vk+1 = f (xk+1)− f ∗ +
L
2

∥∥xk+1 − ρ2xk
∥∥2

2 by defnition

≤ f (yk)− f ∗ + ⟨Luk, xk+1 − yk⟩+
L
2
∥xk+1 − yk∥2

2 +
L
2

∥∥xk+1 − ρ2xk
∥∥2

2 upper bound (2)

= f (yk)− f ∗ − L
2
∥uk∥2

2 +
L
2

∥∥xk+1 − ρ2xk
∥∥2

2 xk+1 − yk = −uk

= ρ2
[

f (yk)− f ∗ + L ⟨uk, xk − yk⟩
]
− ρ2L ⟨uk, xk − yk⟩ adding and subtracting terms

+ (1 − ρ2)
[

f (yk)− f ∗ − L ⟨uk, yk⟩
]
+ (1 − ρ2)L ⟨uk, yk⟩

− L
2
∥uk∥2

2 +
L
2

∥∥xk+1 − ρ2xk
∥∥2

2 .

But

f (yk) ≤ f (xk)− L ⟨uk, xk − yk⟩ −
m
2
∥xk − yk∥2

2 lower bound (1) with w = xk, z = yk

and

f (x∗) ≥ f (yk)− L ⟨uk, yk⟩+
m
2
∥yk∥2

2 lower bound (1) with w = x∗ = 0, z = yk.

Combining last three equations gives

Vk+1 ≤ ρ2
[

f (xk)− f ∗ − m
2
∥xk − yk∥2

2

]
− ρ2L ⟨uk, xk − yk⟩

− (1 − ρ2)
m
2
∥yk∥2

2 + (1 − ρ2)L ⟨uk, yk⟩

− L
2
∥uk∥2

2 +
L
2

∥∥xk+1 − ρ2xk
∥∥2

2

= ρ2
[

f (xk)− f ∗ +
L
2

∥∥xk − ρ2xk−1
∥∥2

2

]
︸ ︷︷ ︸

Vk

+Rk,

where

Rk := −ρ2 m
2
∥xk − yk∥2

2 − (1 − ρ2)
m
2
∥yk∥2

2

+ L
〈
uk, yk − ρ2xk

〉
− L

2
∥uk∥2

2

+
L
2

∥∥xk+1 − ρ2xk
∥∥2

2 −
ρ2L

2

∥∥xk − ρ2xk−1
∥∥2

2 .

Claim 1. Under the choice of α, β and ρ above, we have

Rk = −1
2

Lρ2
(

1
κ
+

1√
κ

)
∥xk − yk∥2

2 ≤ 0.

Proof. Substitute the definitions of α, β, ρ, xk+1, yk into the definition of Rk. (Verify it yourself!)
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It follows hat Vk+1 ≤ ρ2Vk, ∀k, hence

f (xk)− f ∗ ≤ Vk ≤ ρ2kV0

= ρ2k
(

f (x0)− f ∗ +
L
2

∥∥x0 − ρ2x0
∥∥2

2

)
x−1 = x0

= ρ2k
(

f (x0)− f ∗ +
m
2
∥x0∥2

2

)
(1 − ρ2)2 =

1
κ
=

m
L

= ρ2k
(

f (x0)− f ∗ +
m
2
∥x0 − x∗∥2

2

)
x∗ = 0 (3)

≤ ρ2k
(

L
2
∥x0 − x∗∥2 +

m
2
∥x0 − x∗∥2

2

)
upper bound (2),∇ f (x∗) = 0

=

(
1 −

√
m
L

)k

· L + m
2

∥x0 − x∗∥2
2 . ρ2 = 1 −

√
m
L

We have established the following.

Theorem 1. For Nesterov’s AGD Algorithm 1 applied to m-strongly convex L-smooth f , we have

f (xk)− f ∗ ≤
(

1 −
√

m
L

)k

· (L + m) ∥x0 − x∗∥2
2

2
, k = 0, 1, . . .

(Iteration complexity bound) Equivalently, we have f (xk)− f ∗ ≤ ϵ after at most

O

(√
L
m

log
L ∥x0 − x∗∥2

2
ϵ

)
iterations.

Recall GD, which satisfies f (xk)− f ∗ = O
((

1 − m
L

)k
)

and k = O
( L

m log 1
ϵ

)
. AGD improves by

a factor of
√

κ =
√

L
m , which is significant for ill-conditioned problems with a large κ.

Example 1 (Ill-conditioned problems in statistical learning). In statistical learning, we often need
to minimize a function of the form

f (x) = g(x) +
m
2
∥x∥2

2 ,

where g is a convex function corresponding to the empirical risk/training loss (e.g., the logistic
regression loss) of a statistical model with parameter x, and m

2 ∥x∥2
2 is called a regularizer. Often, g

is not strongly convex, so the strong convexity of f comes from the regularizer. In many settings,
the smoothness parameter of f is O(1), and the regularization parameter is taken to be m ∝ 1

n ,
where n is the number of data points. The condition number κ = L

m ∝ n can be large in this case.
We explore this setting in HW3.

3 AGD for smooth convex f

Suppose f is L-smooth, with a minimizer x∗ and minimum value f ∗ = f (x∗). Nesterov’s AGD for
such an f is given in Algorithm 2. Note that we allow the momentum parameter βk to vary with
k, and λk+1 ≥ 0 is chosen to satisfy λ2

k+1 − λk+1 = λ2
k .
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Algorithm 2 Nesterov’s AGD, smooth convex
input: initial x0, smoothness parameter L, number of iterations K
initialize: x−1 = x0, α = 1

L , λ0 = 0, β0 = 0.
for k = 0, 1, . . . , K

yk = xk + βk (xk − xk−1)
xk+1 = yk − α∇ f (yk)

λk+1 =
1+
√

1+4λ2
k

2 , βk+1 = λk−1
λk+1

return xK

(The Lyapunov function approach in the previous section can be adapted to analyze Algo-
rithm 2; see Wright-Recht Chapter 4.4. Here we present a somewhat different proof.)

Recall that a gradient step satisfies the descent property (Descent Lemma, Lec 6 Lemma 1)

f (xk+1) ≤ f (yk)−
1

2L
∥∇ f (yk)∥2

2 ≤ f (yk). (4)

Therefore, we have

f (xk+1)− f (xk) = f (xk+1)− f (yk) + f (yk)− f (xk)

≤ − 1
2L

∥∇ f (yk)∥2
2 + ⟨∇ f (yk), yk − xk⟩ descent property (4), convexity

= −L
2
∥yk − xk+1∥2

2 + L ⟨yk − xk+1, yk − xk⟩ . ∇ f (yk) = L(yk − xk+1) (5)

Similarly:

f (xk+1)− f (x∗) = f (xk+1)− f (yk) + f (yk)− f (x∗)

≤ − 1
2L

∥∇ f (yk)∥2
2 + ⟨∇ f (yk), yk − x∗⟩

= −L
2
∥yk − xk+1∥2

2 + L ⟨yk − xk+1, yk − x∗⟩ . (6)

Define the optimality gap ∆k := f (xk)− f (x∗). Taking eq.(5)×λk(λk − 1)+eq.(6)×λk, we get

λk(λk − 1) (∆k+1 − ∆k)+λk∆k+1 ≤ L ⟨yk − xk+1, λk(λk − 1)(yk − xk) + λk(yk − x∗)⟩− L
2

λ2
k ∥yk − xk+1∥2

2 .

Rearranging terms gives the key inequality:

λ2
k∆k+1 − (λ2

k − λk)∆k ≤
L
2
·
[
2 ⟨λk(yk − xk+1), λkyk − (λk − 1)xk − x∗⟩ − ∥λk(yk − xk+1)∥2

2

]
. (7)

As we show below, the parameters λk and βk are chosen to make the LHS and RHS above tele-
scope.

In particular, substituting λ2
k − λk = λ2

k−1 into LHS of (7) and using the identity 2 ⟨a, b⟩ −
∥a∥2

2 = ∥b∥2
2 − ∥b − a∥2

2 on RHS of (7), we obtain

λ2
k∆k+1 − λ2

k−1∆k ≤
L
2
·
[
∥λkyk − (λk − 1)xk − x∗∥2

2 − ∥λkxk+1 − (λk − 1)xk − x∗∥2
2

]
.
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For the RHS, by definition and our choice of βk+1, we have

yk+1 = xk+1 + βk+1 (xk+1 − xk) = xk+1 +
λk − 1
λk+1

(xk+1 − xk)

⇐⇒λk+1yk+1 − (λk+1 − 1)xk+1 = λkxk+1 − (λk − 1)xk.

Combining the last two equations give

λ2
k∆k+1 − λ2

k−1∆k ≤
L
2
·
[
∥λkyk − (λk − 1)xk − x∗∥2

2 − ∥λk+1yk+1 − (λk+1 − 1)xk+1 − x∗∥2
2

]
.

We sum the above inequalities over k. Note that both sides telescope and λ0 = 0, λ1 = 1, β1 =
−1, y1 = x0, hence

λ2
k∆k+1 − λ2

0∆1 ≤ L
2
∥λ1y1 − (λ1 − 1)x1 − x∗∥2

2

=⇒ λ2
k∆k+1 ≤ L

2
∥x0 − x∗∥2

2 .

Finally, note that

λk ≥
1 +

√
4λ2

k−1

2
= λk−1 +

1
2

,

which, together with λ1 = 1, imply λk ≥ k+1
2 , ∀k. It follows that

f (xk+1)− f (x∗) = ∆k+1 ≤ 2L ∥x0 − x∗∥2
2

(k + 1)2 .

We have established the following.

Theorem 2. For Nesterov’s AGD Algorithm 2 applied to L-smooth convex f , we have

f (xk)− f (x∗) ≤ 2L ∥x0 − x∗∥2
2

k2 , k = 0, 1, . . .

(Iteration complexity bound) Equivalently, we have f (xk)− f ∗ ≤ ϵ after at most

O

√L ∥x0 − x∗∥2
2

ϵ

 iterations.

Compare with GD, which achieves f (xk)− f ∗ = O
( 1

k

)
and k = O

( L
ϵ

)
. Significant improve-

ment by AGD.

4 Bibliographical notes (optional)

AGD was originally developed in Nesterov (1983). See Nesterov (2004) for a textbook convergence
analysis of AGD using bounding functions.

The last decade has witnessed a surge of papers that provide alternative derivation, interpre-
tation or analysis of AGD:
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• The Lyapunov function approach in Section 2 follows Lessard et al (2016). In a related direc-
tion, Su, Boyd and Candes (2015) connect AGD to a certain second-order ODE. Also related
in spirit is a paper by Flammarion and Bach (2015).

• The proof in Section 3 follows Beck and Teboulle (2009).

• Allen-Zhu and Orrechia (2014) view AGD as a linear coupling of GD and mirror descent.

• This blog post by Hardt (2013) relates AGD to Chebyshev polynomials.

• Bubeck et al (2015) provides a geometric perspective and a short proof.

• Diakonikolas and Orecchia (2019) develops the approximate duality gap technique, which
applies to the analysis of AGD.

See d’Aspremont et al 2021 for a recent survey on acceleration methods including AGD and be-
yond.

Momentum/acceleration seems to be quite popular and effective in training neural networks,
despite nonconvexity. Standard libraries like PyTorch typically implement (stochastic) gradient
descent with the options of momentum and Nesterov acceleration.
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