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Lecture 11: Acceleration via Regularization and Restarting;
Lower Bounds

Yudong Chen

Last week we discussed two variants of Nesterov’s accelerated gradient descent (AGD).

Algorithm 1 Nesterov’s AGD, smooth and strongly convex

input: initial x¢, strong convexity and smoothness parameters m, L, number of iterations K
VL/m—1

initialize: x_; = xo, B = NIYTSE

fork=0,1,...K
Y = X + B (xx — x¢1)

Xer1 = Yx — 1 V(i)
return xg

Theorem 1. For Nesterov’s AGD Algorithm 1 applied to m-strongly convex L-smooth f, we have

Fl) = f* < <1_\/f>". (Lt m Iz =Xl

*12
Equivalently, we have f(xyx) — f* < € after at most k = O <\/Elog ongXllz) iterations.

Algorithm 2 Nesterov’s AGD, smooth convex

input: initial xo, smoothness parameter L, number of iterations K
initialize: x_1 = x9, Ao = 0, fp = 0.
fork=0,1,...K
Yk = X + Bk (xk — Xk-1)
Xf+1 = Yk — *Vf(]/k)
1+\/1+W

Akl =
return xg

-1
P = /\k+1

Theorem 2. For Nesterov’s AGD Algorithm 2 applied to L-smooth convex f, we have

2L [|xo — x*|3

Flu) - fx) < =10

In this lecture, we will show that the two types of acceleration above are closely related: we
can use one to derive the other. We then show that in a certain precise (but narrow) sense, the
convergence rates of AGD are optimal among first-order methods. For this reason, AGD is also
known as Nesterov’s optimal method.
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1 Acceleration via regularization

Suppose we only know the AGD method for strongly convex functions (Algorithm 1) and its
(1- %)k guarantee (Theorem 1). Can we use it as a subroutine to develop an accelerated
algorithm for (non-strongly) convex functions with a kl—z convergence rate?

The answer is yes (up to logarithmic factors). One approach is to add a regularizer € ||x||3 to f(x)
and apply Algorithm 1 to the function f(x) + € ||x||3, which is strongly convex. See HW 3.

2 Acceleration via restarting

In the opposite direction, suppose we only know the AGD method for (non-strongly) convex
functions (Algorithm 2) and its kl—z guarantee (Theorem 2). Can we use it as a subroutine to

develop an accelerated algorithm for strongly convex functions with a (1 — %)k convergence rate
(equivalently, a \/% log ! iteration complexity)?

This is possible using a classical and powerful idea in optimization: restarting. See Algorithm 3.
In each round, we run Algorithm 2 for \/% iterations to obtain x;, 1. In the next round, we restart
Algorithm 2 using X;;1 as the initial solution and run for another \/% iterations. This is repeated
for T rounds.

Algorithm 3 Restarting AGD

input: initial Xo, strong convexity and smoothness parameters 1, L, number of rounds T
fort=0,1,...T

Run Algorithm 2 with %; (initial solution), L (smoothness parameter), 4/ % (number of
iterations) as the input. Let X;;1 be the output.

return x7

Exercise 1. How is Algorithm 3 different from running Algorithm 2 without restarting for T x /&

iterations?

2.1 Analysis

Suppose f is m-strongly convex and L-smooth. By Theorem 2, we know that

2L |7 —x*[l; _ m % — x|l

Flr) - flx) < =g - R

By strong convexity, we have

fE) = f(x7) + (V) % —x7) +% 1% —x|l2,
=0

hence ||%; — x*||5 < 2 (f(%) — f(x*)). Combining, we get

f(X1) — f(x") < f(xt);f(x*)
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That is, each round of Algorithm 3 halves the optimality gap. It follows that

T
)~ 1) < (3) () = £,

Therefore, f(X7) — f(x*) < € can be achieved after at most

T=0 <log f(xo)—f(x*)> rounds,

€

which corresponds to a total of

L L Xo) — f(x*
T x 8L _ @) ( —log f(xo)f(x)> AGD iterations.
m m €

This iteration complexity is the same as Theorem 1 up to a logarithmic factor.
Remark 1. Note how strong convexity is needed in the above argument.

Remark 2. Optional reading: This overview article discusses restarting as a general /meta algorithmic
technique.

3 Lower bounds

In this section, we consider a class of first-order iterative algorithms that satisfy
xo = 0; Xkp1 € Lin{Vf(x0), Vf(x1),...,Vf(xk)}, Vk >0, (1)

where the RHS denotes the linear subspace spanned by V f(xo), Vf(x1),..., Vf(xx); in other
words, xi1 is an (arbitrary) linear combination of the gradients at the previous (k + 1) iterates.
Note that gradient descent and AGD satisfy the above condition.

3.1 Smooth and convex f

Theorem 3. There exists an L-smooth convex function f such that any first-order method in the sense of (1)
must satisfy

3L [|xo — x*|3

— ) >
Flo) = Fx') = 0
Comparing with this lower bound, we see that the k—Lz rate for AGD in Theorem 2 is opti-
mal/unimprovable (up to constants).
Proof of Theorem 3. Let A € R9*? be the matrix given by
2, i=j
Aj=1¢-1, je{i—-1i+1} 2)
0, otherwise.


https://arxiv.org/pdf/2006.14810.pdf

UW-Madison CS/ISyE/Math/Stat 726

Spring 2025

Explicitly,
(2 -1 0 O 0]
-1 2 -1 0 0
0o -1 2 -1 0 0
A= .
0 -1 2 -1
| 0 -1 2

Let ¢; € R denote the i-th standard basis vector. Consider the quadratic function

flx) = ngAx - %xTel,

which is convex and L-smooth since 0 < A < 4I. Note that Vf(x) = L(Ax — ¢1). By induction, we

can establish the following (see Section 3.1.1 for the proof):
Lemma 1. Suppose (1) holds. For k > 1, we have
xp € Lin{e1, Ax1,...,Axx_1} CLin{ey, ..., ex}.

Therefore, if we let Ay € R?*? denote the matrix obtained by zeroing out the entries of A

outside the top-left k x k block, then

L L . . [L L
f(Xk) = gxl;rAkxk - le—crel > fk = mxln {SXTA](X — 4XT€1} .
By setting gradient to zero, we find that the minimum above is attained by
1 2 k !
f=(1- 1- 1= ———,0,..., R,
Tk < PRI i A e 1 0) <

with objective value

s L1
fe = 8<1 k+1>'

It follows that the global minimizer x* = x} of f has objective value

f) = fi =5 (1= 357)

d . 2
2 2 ] d+1
I = ool = il = £ (1- ) <%

since xg = 0. Combining pieces and taking d = 2k + 1, we have
fla) =f(7) = fe = fa by (3)
L 1 1
_8<k+1_2k+2> by () and (5)
_ L k+1
16 (k+1)2
_ L d+1
- 32(k+1)2
3L [|x* — xol3
=32 (k+1)2°

and satisfies

by (6)

®3)

(4)

)

(6)
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3.1.1 Proof of Lemmal

We use induction on k. Base case k = 1: we have
x1 € Lin{Vf(x9)} =Lin{Axp —e1} = Lin{e;}

since xo = 0 by assumption.
Suppose the following induction hypothesis

x; € Lin{ey, Axq,...,Ax;_1} C Lin{ey,..., e}

holds foralli € {1,2,...,k}. We want to prove (i) and (ii) below:

@ (ii)
Xka1 é Lin{ej, Axy,..., Ax} C Lin{eq, ..., ex41}-

We have
Xxi1 € Lin {Vf(xo), cey Vf(xk)} by @)
=Lin{Axo —e1, Ax; —e1,..., Axy —e1} Vix) = %(Ax —e1)
=Lin{—e, Ax;y —e1,..., Axx — €1} x0=20

C Lin {ey, Axy, ..., Axy},

which proves (i). For each 1 <j <d, leta; € R? denote the jth column of A. Note that only the
first (j + 1) entries of aj are nonzero, so 4; € Lin {el, €, .-+, €j11 } Therefore, for 1 < i < k, we have

d
Ax,- = Za]-xi(j)
j=1

i
=) axi(j) by induction hypothesis
j=1
€ Lin {ey,e2,..., €11} aj € Lin{ey, ez,... 541} .
it follows that
Lin{e1, Axl, ey Axk} QLin{el, ey, e, ..., 61132/--~/€k+1}

= Lin {ei, ez, ..., €41},

which proves (ii).

3.2 Smooth and strongly convex f

k
For strongly convex functions, we have the following lower bound, which shows that the (1 — \/Ll/im)
rate of AGD in Theorem 1 cannot be significantly improved.

Theorem 4. There exists an m-strongly convex and L-smooth function such that any first-order method in
the sense of (1) must satisfy

Cm N )
f) = fe) = 5 (1= 2= ) = I3,

5
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Proof. Let A € R?*? be defined in (2) above and consider the function

L—m m
flx) = == (xTAx —2xTer) + %13,

which is L-smooth and m-strongly convex. Strong convexity implies that

flx) = f(x) = F Ilxe =23 )

A similar argument as above shows that x; € Lin {e;, ..., e}, hence

d
2 N2
e =27 > 32 x7(i)7, ®)
i=k+1
where x*(i) denotes the ith entry of the minimizer x*. For simplicity we take d — oo (we omit the
formal limiting argument).! The minimizer x* can be computed by setting the gradient of f to zero,
which gives an infinite set of equations

L/m+1 , win
x(k—l)—ZWx (k) +x*(k+1) =0, k=23,...

Solving these equations gives

i=12,... )

i) (x/L/m—1>i

VL/m+1

Combining pieces, we obtain

fla) = f(x') = Z ¥ (i) by (7) and (8)

\Y
N3

2(k+1)
) l|x0 — x* |3 by (9) and xg = 0

) o — 2|2
+1 (\/L/m +1)2

k+1 )
) o — 212

VL/m+1
\/L/

%
NIEEENIE

(4
(1-
(1-

Remark 3. The lower bounds in Theorems 3 and 4 are in the worst-case/minimax sense: one cannot
find a first-order method that achieves a better convergence rate on all smooth convex functions
than AGD. This, however, does not prevent better rates to be achieved for a sub class of such
functions. It is also possible to achieve better rates by using higher-order information (e.g., the
Hessian).

1The convergence rates for AGD in Theorems 1 and 2 do not explicitly depend on the dimension d, hence these results
can be generalized to infinite dimensions.
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