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Lecture 12: Conjugate Gradient Methods

Yudong Chen

Given a symmetric positive definite (PD) matrix A, we want to minimize the quadratic function

flx) = %xTAx —b'x.

We have Vf(x) = Ax —band V2f(x) = A. Since 0 < A < Amax(A)I, the function f is convex and
Amax(A)-smooth, and the global minimizer is arg min, f(x) = x* = A~!b.

Example 1. A special case of the above problem is the linear least squares problem
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Example 2. Minimizing f above is equivalent to solving the linear system
Ax =b

with symmetric positive definite A. This problem arises in many applications. One example is

when A = V?¢(z) and b = Vg(z), so the solution of the linear system is (V?g(z)) ' Vg(z), which
is the search direction at point z of Newton’s method applied to minimizing g. Other examples
include A being a covariance matrix or a graph Laplacian matrix.

Question 1. Why not just compute A~ and use the formula x* = A=1b to compute the minimizer?
Yy notj 4 4

1 First-order methods and Krylov subspace

(In this section, x; denotes the iterate of an arbitrary first-order method.)
Consider first order methods for which each iterate x; lies in the affine subspace

xo +Lin{Vf(xo0),..., Vf(xk-1)};
explicitly,

k-1
xXe=x0— Y_ hixVf(xi), 1)
=

1

where h; € R, Vi, k. Both GD and AGD take the form (1).
For quadratic f, thanks to the expression Vf(x) = Ax —b = A(x — x*) for the gradient, we
have the following.

Lemma 1. For the quadratic function f(x) = 3x" Ax — b  x and all k > 0, we have
X € xo + Lin {A(xo —x*), A%(xg — x*), ..., AR(xo — x*)}
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Proof. We prove by induction on k. The base case k = 0 is trivially true. Now suppose
x; — xp € Lin {A(xo —x*), A% (xg — x%),..., Al(xo — x*)} , Vi < k.
It follows that
Vf(xi)=A(x;—x")
€ Lin {A(xo —x*), A% (xg — x%),..., AT (xg — x*)} , Vi < k.
Hence

Xkp1 — X0 € Lin{V f(xo),..., Vf(xx)}
C Lin {A(xo —x%), A%(xg — x%),..., A (xg — x*)} : ()

Definition 1. The linear subspace
Ky := Lin {A(xo —x*), A% (xg — x%),..., A¥(xo — x*)}
is called the Krylov subspace of order k (generated by A and xo — x*).
Lemma 1 says that all first-order methods in the form (1) satisfy

Xk € x0 + Ky, Vk.

2 Conjugate gradient methods

(In this section, x; denotes the iterate of the CG method specifically.)
The conjugate gradient (CG) method is given by

= i ’ k - 1, 2, e
= 218 I, S )

By definition, for quadratic f, CG converges at least as fast as any first-order method, including
Nesterov’s AGD. Therefore, CG inherits the convergence guarantees for AGD: it outputs xj such
that f(x;) — f(x*) < € in at most

/L [ Lixo—x*|3
O (min{ — |lxo — x*|,, logM}) iterations,
€ m €

where L = Apax(A) and m = Apin(A) > 0.
But we can say more.
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2.1 Properties of CG

Lemma 2 (Lemma 1.3.1 in Nesterov’s book). For any k > 1, we have

ICk = Lin {Vf(XO), ey Vf(xk,l)} .

Proof. In equation (2) we already established Lin{V f(xp),..., Vf(xx_1)} € Kk for each k. It
remains to prove the reverse inclusion.

We use induction on k. Suppose Lin{Vf(xp),..., Vf(xr_1)} 2 Kt. We want to show that
Lin{Vf(xo), ceey Vf(xk)} 2 Ick+1.

Note that x;_1 € xo + K_1 can be expressed as

k—1
Xe—1 =X+ Y Pik—1A(xg — x7).
i=1
Consider three cases:

Case 1: Vf(xx_1) # 0. Then Vf(xx) € Ky, 1 means

k .
Vf(xk) = A(xo — x*) + Z IBi’kAZJrl (XO - x*)
i=1
k—1 )
= A(xo— )+ Y Bix AT (xg — x*) + B A (g — x7).
i=1

ek

We claim that B # 0. Taking the claim as given, we have

Kiy1 = Lin {ICk U A (xg — x*)}
=Lin{K, UV f(x)}.
C Lin{Vf(xo), ..., Vf(xk-1), Vf(xx)} -
Proof of claim: For the sake of contradiction, suppose By = 0. Then

k-1
X=X+ Y PixA (x0 — x*) € x0 + Ky,
i=1

SO

X = arg min X) = ar min X) = Xp_1.
k ngXQ+’Ckf( ) gXGX[rHCk,lf( ) k=1

Note that by definition of x;_; and (2), we have

1
Xp_1 — va(xk—l) € xo + Kx,

hence

flvn) = fw) = _min £(x) < f (x“ - ,fwmo)

1
< fxg-1) — o IVf(xi_1)|5.  Descent Lemma

Since V f(xx_1) # 0, we have f(xx_1) < f(xx_1), a contradiction.
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Case 2: Vf(xx_1) = 0and Bx_1x-1 # 0. Hence

0=Vf(xe-1) = A(x—1 — x7)
k-2

= A(XQ - X*) + Z ‘Bi,k_lAiJrl (XO - x*) +ﬁk_1,k_1Ak(x0 - x*).
i=1

ERk1
This means A (xp — x*) € Ki_; and thus Ky = Ks_;. It follows that A**1(xy — x*) € Kj and

@)
Kii1 = Ki. We conclude that Lin {V f(xg),..., Vf(x¢)} 2 Ky = Kii1, where step (i) follows
from induction hypothesis.

Case 3: Br_1x—1 = 0. Following the same arguments as in proof of the claim above, we can show that
Bk—1x—1 = 0implies V f(xx_5) = 0. We then repeat the argument in Case 2 for k — 2.

O]

Lemma 3 (Lemma 1.3.2 in Nesterov’s book). Forany 0 < i < k, we have

(Vf(xk), Vf(xi)) = 0.
Proof. Define a function @ : RF 5 R by

D(A) = f(xo - kiAin(xi) )
i=0

exo+Kx

where A = (/\0, A, Ao, ,/\k,l)T S le.
Since xo + ICx = xo +Lin {V f(x¢),..., Vf(xx_1)} (Lemma 2), the CG iterate x; = argminycy, ik, f(X)
can be written as

k-1
X =x0— Y AV f(x)
i=0

with
AT = in ®(A).
arg min &(4)
Therefore, for each i:
od(N) B
= S = (R, ~ V).

Two immediate corollaries:

Corollary 1 (Corollary 1.3.1 in Nesterov’s book). CG finds x* = argmin, g« f(x) in at most d
iterations.

Proof. Lemma 3 states that the vectors V f(xg), Vf(x1),. .. are orthogonal to each other. But in IR,
there cannot be more than d orthogonal non-zero vectors, so we must have V f(x;) = 0 and thus x4
is optimal. O

Corollary 2 (Corollary 1.3.2 in Nesterov’s book). Vp € K, (Vf(x), p) = 0.

Proof. By Lemma 2, p € Ky = Lin{V f(xo),..., Vf(xx_1)}. By Lemma 3, any linear combination
of {Vf(x0),..., Vf(xx_1)} is orthogonal to V f(xy). O
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2.2 Why is CG called CG?

Definition 2. Two vectors p,q € R are said to be conjugate w.r.t. a matrix A € R**?if (Ap,q) =
T
g Ap =0.

We can write the iteration of CG as
X1 = Xk — Hipy,
where Jiy is the stepsize and py is the search direction. Later we will show that
Vk#i: (Apkpi) = 0.

Nocedal-Wright: “Conjugate gradients is a misnomer. It is the search/descent directions that are
conjugate, not the gradients.”
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