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Lecture 13: Conjugate Gradient Methods:
Implementation and Extensions

Yudong Chen

1 Recap

Consider f(x) = Jx"Ax —b'x, where A - 0. Note that x* = A~'band Vf(x) = Ax—b =
A(x — x*). Minimizing f is equivalent to solving the linear system Ax = b.
The conjugate gradient (CG) method is given by

= i , k=1,2,...,
=8, I, S )

where K := Lin {A(xg — x*),..., A¥(xo — x*) } is the Krylov subspace of order k.
Lemma 1. Forany k > 1, we have Ky = Lin{V f(x0),..., Vf(xx_1)}.

Lemma 2. Forany 0 < i < k, we have (V f(xy), Vf(x;)) = 0.

Corollary 1. CG finds x* = arg min, g« f(x) in at most d iterations.

Corollary 2. Vp € Ky : (Vf(x¢),p) =0.

2 Efficient implementation of CG
Define (Si = X1 — X
Lemma 3. Forallk > 1, K = Lin{do,1,...,6k-1} -

Proof. We use induction on k. Suppose Lin {dp, 01, ..., 61} = Ky. Want to show Lin {dg, 61, ..., } =
K1

e If Vf(xx) = 0: In the proof of Lemma 1 we showed that Ky = K¢ and x,.1 = x, = x*.
Hence .
Lin {50, 51, e ,5](,1,5](} = Lin {(50,51, - .,(5,{,1,0} g ’Ck = Kk+1,

where (i) follows from the induction hypothesis.
e If Vf(xx) # 0: In the proof of Lemma 1 we showed that
k

X1 = %0+ Y Biks1A (X0 — x°) + Bry1 1A' (x0 — x¥)
i=1
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for some Byi1x+1 # 0, hence

k
O = X1 — Xk = Yo = X+ Y Biki1A'(x0 = x) +Brir 1 AT (xo — x¥), )

ek, i=1 ,

eX;

hence
Lin {0, d1,...,0k—1,0c} = Lin {IC, U o}
© Lin {le U AR (xg — x*)}
= ICk+1-
For step (ii), one should separately verify both C and O hold using (1) and By k11 # 0.
O

Lemma 4 (Lemma 1.3.3 in Nesterov’s book). For any k,i > 0,k # i, the vectors 6;, 0y are conjugate
w.r.t. A, ie., (Ad, ;) =0.

Proof. Assume without loss of generality that k > i. Then

(A(xp1 — xk),6i)

= (A(xgp1 —x") — A(xx — x7),6;)
=(Vf (xk+1) i) = (Vf(xx), i)
=0-

/

(Aby, 6i) =

where in the last step we use §; € Kix1 € Ky € Kyy1 and Corollary 2 (which guarantees
Vf(ka) 1 ’Ck+1, Vf(xk) 1 ICk) ]

2.1 Deriving explicit formula for CG
We are ready to derive an explicit formula for CG iterate x; 1. Because

Lemma 3

5k € Ick+1 Lem:mal Lin {’Ck U Vf(xk)} Lem:ma3 Lin {50, cen /(Sk—l/ Vf(xk)} ’

we can write ;
-1
Xpi1 — X = O = —thf(xk) + 2 06/(5]' (2)
j=0

for some scalars hy, xg, &1, . .., a_1. If we can determine these scalars, then we can compute xy1
iteratively given x.
Fori=0,1,...,k — 1, taking the inner product of (2) and AJ; gives

0 = (Ad;, &) Lemma 4
k—1
= —Ih <A(5i/ vf(xk)> + Z o <A(5], (51>
=0
= —hk <A5i, Vf(xk)> + «; <A5i, 5z> . Lemma 4
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Also note that
Abi = A(xip1 —x%) — A(x; — x*) = Vf(xi11) — Vf(x;).
Combining the last two equations gives
a; (Adi, 0;) = i (V f(xip1) = Vf(xi), Vf(xx)) -
e Fori =0,1,...,k—2, wehave (Vf(xi11), Vf(xx)) = (Vf(xi), Vf(xx)) = 0 by Lemma 2,
hence

(%} <A(51', 5z> =0 A£9 n; = 0.

e Fori =k —1,wehave
a1 (Adk—1,0k-1) = M (V f(xx) = Vf(xk-1), Vf(xr)) = e (Vf(xx), Vf(xx))

where the last step follows from Lemma 2. Since (Ady_1,0¢_1) # 0as A > 0, it holds that

RANENI I |V £ ()3

e (Abk_1,0k—1)  (Vf(xk) — Vf(xk-1),0k-1)

Plugging the above values of {7, ..., a;_1} into (2), we obtain that

Xkp1 = Xk — IV f (%) + ap_1051 3)
o ~ IV £ ()13
B <Vf )~ ) - Vf<xk1>,5k1>‘5k‘1>'
=Pk

where one can view py € RY as the search direction and /; € R as the stepsize.
It remains to determine hy. Since xj,1 minimizes f(x) over xg + K1 and xx — hpy € xo + Kyiq
for all 1 € R, the stepsize hy is given by

hy = argr}lrélﬂglf(xk — hpy),

that is, exact line search.

Explicit form of CG: In summary, CG can be implemented as

Xg1 = Xk — hipr,

where

IVf(x0)3
Vf(xx) = Vf(xk-1),0k-1)

pe = Vf(xe) — { Ok-1,

Ok—1 = Xp — Xg—1,

hy = argrhrélﬂr{lf(xk — hpy).

Note that the exact line search step involves minimizing a one-dimensional quadratic function and
can be computed in closed form.

Question 1. How much storage is needed in CG? How much computation per iteration?

3
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Remark 1 (Conjugacy). The search directions py = —hikék are conjugate w.r.t. A:

(Apepi) =0, Vk#i
since (Ady, 6;) = 0 (Lemma 4).
Remark 2 (Relation to heavy-ball). From (3) we have
Xep1 = Xk — MV f(x) + a1 (xx — x-1),

which resembles the heavy-ball method (gradient step + momentum step) but with time-varying
I’lk and Kj—1-

Remark 3. CG does not require knowing the smoothness and strong convexity parameters L and m.

Remark 4. CG for quadratic f has a very rich convergence theory beyond the asymptotic linear rate.
For example:

¢ If A has r distinct eigenvalues, CG terminates in at most r iterations.
* More generally, CG converges fast when the eigenvalues of A form clusters.

¢ Precondition CG: one may transform the problem so that A has a more favorable eigenvalue
distribution.

We will not delve into these results; see Chapter 5.1 of Nocedal-Wright.

3 Extension to non-quadratic functions

We have written CG in a form that only involves the gradient of f, without explicit dependence on
the quadratic structure of f. This allows extension to non-quadratic functions. Such extensions are
known as “Nonlinear CG”, since V f(x) is nonlinear in x.

Algorithm 1 Nonlinear CG

e Initial search direction: po = V f(xp).
e Fork=0,1,...

- Set
X1 = Xk — hpr,
where hy is computed by (exact or inexact) line search.

- Compute the next search direction as

Pk+1 = Vf(Xk1) — BrPrs

with some specific choice of i (see below).

There are different ways of choosing the By:

2
¢ Dai-Yuan: By = ~ f(lZ{ )(f%})(ﬂfk),pw . (equivalent to the wy_; that we derived for quadratic f)

4
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2
¢ Fletcher-Rieves: B — — 19/l
etcher-Rieves: B 197 (o) 2

* Polak-Ribiere: By = — {vf (Xk+1)|/‘§§((§kk;|1é—vf (i)

All of above lead to the same result in the special case of quadratic f. See Chapter 5.2 of Nocedal-
Wright for more on nonlinear CG.

Nonlinear CG is attractive in practice: it does not require matrix storage and performs well
empirically (e.g., faster than GD). Theoretical results are not as strong as AGD—this is a topic for
further research.
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