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Lecture 15: Projected Gradient Descent

Yudong Chen

Consider the problem

min f(x), (P)

xeX

where f is continuously differentiable and X C dom(f) C R" is a closed, convex, nonempty set.
In this lecture, we further assume f is L-smooth (w.r.t. ||-||,).
1 Projected gradient descent and gradient mapping
Recall the first-order condition for L-smoothness:
L
Yxy: o fy) < FO0+ (VF@)y =)+ 5 lly - xll;- (1)

For unconstrained problem, recall that each iteration of gradient descent (GD) minimizes the
RHS above:

. L
©D) e = angmin { F() + (VF(xy =)+ 5 Iy~ w3}
yER?

= X — %Vf(xk)-

Projected Gradient Descent (PGD) For constrained problem, we consider PGD, which minimizes
the RHS of (1) over the feasible set X'

. L
(PCD) 3y = argmin { f(30) + (¥ (x0)y = 30) + 5 Iy — el )
yeX

complete this square

)

= argmin LHy—xk—|—1Vf(xk)
2 L

= Py <xk - in(xk)> .

As in GD, we can also use some other stepsize % with > L:

Xpi1 = Py (xk — ;Vf(xk)) .

It will be useful later to recall that Euclidean projection is characterized by the minimum
principle

Vye X: (Py(x)—x,y—Px(x)) >0. (2)

1
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1.1 Gradient mapping

Many results for GD can be generalized to PGD, where the role of the gradient is replaced by the
gradient mapping defined below.

Definition 1 (Gradient Mapping). Suppose X C R is closed, convex and nonempty, and f is
differentiable. Given 1 > 0, the gradient mapping G, R? — R? is defined by

Gn(x):17<x—PX (x—éVf(x))) for x € RY.

Using the above definition, we can write PGD in a form that resembles GD:
1
Xky1 = Xk — qu(xk)-

The fixed points of PGD are those that satisfy G, (x) = 0.
Remark 1. When X = RY, G, (x) = Vf(x). Hence the gradient mapping generalizes the gradient.

For constrained problems, gradient mapping acts as a “proxy” for the gradient and has proper-
ties similar to the gradient.

o If G;(x) = 0, then x is a stationary point in the sense that —V f(x) € Ny (x). If || G, (x) H2 <eg,
we get a near-stationary point.

* A Descent Lemma holds for PGD: if we use 7 > L, then f(x;11) — f(xx) < —5- ||Gy(xx) H;

We elaborate below.

1.2 Gradient mapping and stationarity
The first lemma shows that x* is a stationary point of (P) if and only if G, (x*) = 0.

Lemma 1 (Wright-Recht Prop 7.8). Consider (P), where f is L-smooth, and X is closed, convex and
nonempty. Then, x* € X satisfies the first-order condition —V f(x*) € Ny (x*) if and only if x* =
Py <x* — %Vf(x*)) (equivalently, G, (x*) = 0).

Proof. “if” part: Suppose G, (x*) = 0. This means

x* = Py (x* — ;Vf(ﬁ‘)) = argmin {; Hy — <x* - in(x*))

yeX

2
2} .
By first-order optimality condition applied to the above minimization problem, we have

]

Ny(x*) 5 =V [; Hy— (x* - 2Vf(x’k)>

- —;Vﬂx*),

y=x*

which is equivalent to Ny (x*) > — 1V f(x*).
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“only if” part: Suppose —V f(x*) € Ny (x*). By definition of Ny (x*), we have

Yy e X 021<—Vf(x*),y—x*>

=

Xt — ;Vf(x*) —x*,y—x*>.

By the minimum principle (2) with x = x* — %V f(x*), the above inequality implies

x* =Py (x) =Py (x* — ;Vf(ﬁ)) :
O

To state the next lemma, we need some notations. Let By(z,7) := {x € R?: ||x —z||, < r}
denotes the Euclidean ball of radius r centered at z. For two sets S1,S; € RY, let S; + S, =
{x+y:x € S5,y € Sy} denote their Minkowski sum.

Our next Lemma 2 says if |G, (x) Hz is small, then x almost satisfies the first-order optimality
condition and can be considered a near-stationary point. Lemma 2 is a generalization of the “if”
part of Lemma 1.

Recall that the Minkowski sum of two sets A, B C IR? is defined as A + B := {a+b:a€ AbeB}.

Lemma 2 (Gradient mapping as a surrogate for stationarity). Consider (P), where f is L-smooth,
and X is closed, convex and nonempty. Denote X = Py (x - %Vf(x)) , 50 that G (x) = n(x — %). If
HG,,(JC)H2 < € for some € > 0, then:

_ V(%) € Na(%) + B <O,e <; +1>)

e=VueX: (—Vf(x),u—x)<e (f; +1> Ju — x|,

Proof. Suppose that |G, (x)||, < e. By definition:

X

Py (x — ;Vf(x)> = argmin {; Hy — <x — ;Vf(x)>

yeX

3
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Hence x satisfies the optimality condition of the minimization problem above:
1
- (x —x+ ﬂVf(x)) € Ny(%).
Adding and subtracting — %V f(x):

1 _ _ 1 1 _ -
—ﬁVf(x) — (x —x+ %Vf(ﬂ - ﬂVf(x)> € N ().

P

Note that
) 1 _
Il = || £+ (VF) = Vi@ |,
—%G,,(x)
1 1 ]
=3 1Gy ()], + y V@)~ V),
<L|x=2],=5 |Gy (1),
1 L
= 1+) Gy (x
<3 (1+5) l6, @l
<5 (+3)
w1 U
Hence

- ;Vf(f) € Ny(%)+p
— Vf(%) € Nx (%) +1p
— V() € No(3) + B (0,6 <1+ ;)) .

1.3 Sufficient descent property/descent lemma

The gradient mapping also inherits the descent lemma.

Lemma 3 (Theorem 2.2.13 in Nesterov’s 2018 textbook). Consider (P), where f is an L-smooth function.

Ifn >LxeXand ¥ = x — %G,](x), then:

_ 2
f(2) < f(x) HG )|z
Proof. From the first-order condition for L-smoothness (Lecture 4, Lemma 1),

FR) < FG)+ (V) 7 —x) + Lo o,

1 1

= f(x —;(Vf (x >+EHG77(X)H§ f—x:—ﬁGU(x)
— f(x) — 2117 Hcﬂ(x)uj + ; (Gy(x) — V£(x),Gy(x)). add/subtract ; (Gy(x), Gy(x)) = ; 1G, ()|
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It remains to show that (G, (x) — Vf(x), G,(x)) < 0. Plugging in the definition of G, (x), we have

(Gy(x) = Vf(x), W(x)>

UG ;me)} = Vi@ =Py (r= 1 vr)])
=1? <x — ;Vf(x) —Py (x — ;Vf(x)> ,x— Py (x - ;Vf(x)>>

N——
=z

=* (z = Px(2),x — Px(2))
<0

using x € X and the minimum principle (2). O

2 Convergence guarantees for projected gradient descent
Consider the PGD update
1 1
1 = P (3= L VF(0) ) =3~ 1 Gul),

where we fix the stepsize to be 1, with L being the smoothness parameter of f.
The convergence guarantees of PGD parallel those of GD.

2.1 Nonconvex case

Suppose f is L-smooth.
By the Descent Lemma 3:

Frin) — () <~ GLwIE.

Summing up over k and noting that the LHS telescopes:

1 &
f(xie1) — ) < TZHGL x5

If f := infy,cy f(x) > —oo, then

k
o LGl < £(oa) — F

Hence
2L (f(x0) = f)
min Gy ()], < \/ =l
Equivalently, after at most k = W iterations of PGD, we have

min |G (xi)[l; < 5

0<i<k

= die{l,...,.k+1}: =V f(x;) € Ny(x;) + B2 (0,¢€)

where the last line follows from Lemma 2.
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2.2 Convex case

Suppose f is L-smooth and convex, with a global minimizer x*.
1) From HW 4: ||Gr(x¢)|l, < ||Gr(xk—1)|l,,Vk. (In HW3 we proved a similar monotonicity

property for the gradient.) The result above thus implies

feutal < | ZEUE =)

2) From Descent Lemma 3:

Flrin) < £ — 57 161G < £,

so the function value is non-increasing in k.
3) Convexity gives the lower bound

fx7) = fla) +{(Vf(x), 2" = x),

whence

fleen) = f(x7) < fxign) — flx) = (Vf(x), " = x)
= f(xk+1) = f(xx) = (Vf(xx), X1 — xx) + (Vf(xk), X1 — x7) ®)
(In the analysis of GD, we then used V f(xx) = L(xx — x4,1) and the 3-point identity). Recall that

. L
i = avginin { (9 ),y — ) + 5 = 0l |
yeX

The first-order optimality condition gives
Vy € X+ (Vf(xx) + L (xk41 — Xk) Y — Xge41) = 0.
Taking y = x* gives
(Vf(xr), Xpp1 — %) < L (X1 — Xp, X5 — Xpq1)
= 2 (I = "2~ s — 213~ s —x¢[2) . 3-point identity
Plugging into (3), we get
F i) = F) < Floaian) = £(5) = (VFCe) v = x6) — 5 s — e lB 45 [l — 2713 = 5 i — 2°12

<0 by L-smoothness

L > L 2
< =2 - 2 e — 1B

We then follow the same steps as in the analysis of GD, summing up and telescoping the above
inequality:
k
Y- (i) = F(x)) < 5 llxo =215 = 5 v =21 < 5 llvo —x°[3.
i=0
But LHS > (k+ 1) (f(xk+1) — f(x*)) due to monotonicity f(xx11) < f(xg) < --- < f(xp). It
follows that )
Lijxo —x*||;

f(xk+1) _f(x*) < 2(k—|— 1)



UW-Madison CS/ISyE/Math/Stat 726 Spring 2025

2.3 Strongly convex case

Suppose f is m-strongly convex and L-smooth, with a unique global minimizer x*.
Since x* satisfies the first-order optimality condition, we have Py (x* — 1 Vf(x*)) = x* (Lemma
1). By nonexpansiveness of Py, we have

2

o (= 195 ) o (v - 1950

2
s — 2 = \
2
2

<|| (= £ 9r0) = (v - Lvre)

= = xR+ 5 IV () = VA ()R = 5 (= ", Vf () = V().

2

The last RHS term satisfies the co-coercivity property

IVf(xx) = V()5 < LIVF(x) = VF(x), x — x7)
by HW2 Q1, hence

L (- v, V() — V(). @

e Y L

By strong convexity of f:

Sl 2 f(7) + (VF(x), 0 = x7) + % o = x|l
F(x) 2 ) + (T f ), ¥ — ) + o llxe— )15
Adding up the two inequalities gives
(V(xe) = V() = ") 2 m g — 7.

(this is called the strong monotonicity or coercivity property of the gradient.) Plugging into (4), we
obtain

2 m 2
e =213 < (1= ) v — %711

m k+1
— e =2 3< (1-F) o —x[3.

Exercise 1. Generalize the above results to PGD with a general stepsize %, where 7 > L.

3 Extensions

3.1 Acceleration (optional)
Nesterov’s acceleration scheme can be extended to PGD:

Vi = Xk + B (Xk — Xk—1)

, momentum step
X1 = Py (ye — ok Vf(yx)) - projected gradient step
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This is a special case of the accelerated proximal gradient method (a.k.a. fast iterative shrinkage-
thresholding algorithm, FISTA), which applies to problems of the form

min f(x) + g(x), ®)

x€R4
where f : R? — R is convex and smooth, and ¢ : R? — R is convex and lower semicontinuous
with a computable proximal operator. Equation (5) is called a composite problem. As discussed in

Lecture 1-2, the constrained problem (P) corresponds to a special case of the composite problem (5)
with ¢(x) = Iy (x) being the indicator function of X

For details see the chapter from Beck’s book.

3.2 Other search direction?

Recall that for unconstrained problems, we may use some other search direction pj instead of the
negative gradient direction and still guarantee descent in function value (Lecture 7-8).

For constrained problem, can we use some other direction py # —V f(x) in the update x;,1 =
Py <xk + %pk ? In general, doing so does not guarantee the descent property f(xxi1) < f(x¢),
even when py satisfies (px, —V f(xx)) > 0. See below for an illustration.
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