Lecture 16: Frank-Wolfe (aka Conditional Gradient) Method

Yudong Chen

1 Setup

Consider the constrained problem

$$\min_{x \in \mathcal{X}} f(x), \tag{P}$$

We still assume that f is *L*-smooth and convex, and \mathcal{X} is closed, convex and non-empty.

In many settings, computing projection onto \mathcal{X} is expensive, but linear optimization $\min_{x \in \mathcal{X}} c^{\top} x$ is easy. This is typical when \mathcal{X} is a polytope $\{x \in \mathbb{R}^d : a_i^{\top} x \leq b_i, i = 1, ..., m\}$.

Examples:

- Probability simplex and ℓ_1 ball: Projection uses $\Theta(d \log d)$ arithmetics operations (sorting). Linear optimization oracle only takes $\Theta(d)$ (finding the smallest element of the vector *c*). This is not a dramatic difference, but linear optimization has other benefits such as sparsity of solution. See Section 5.
- For some polytopes, projection (exactly) is computationally hard, but linear optimization can be done in poly-time. E.g., matching polytope for a general graph with |V| vertices has ~ 2^{|V|} constraints, but linear optimization is tractable (e.g., using Edmonds' algorithm).

Frank-Wolfe (FW) method uses a linear optimization oracle instead of a projection oracle.

2 Frank-Wolfe method

Algorithm 1 Frank-Wolfe

- Input: initial point $x_0 \in \mathcal{X}$, algorithm parameters $a_k > 0, k = 0, 1, ...$
- For k = 0, 1, ...

$$egin{aligned} v_k &= \operatorname*{argmin}_{u \in \mathcal{X}} \left\langle
abla f(x_k), u
ight
angle, \ x_{k+1} &= rac{A_{k-1}}{A_k} x_k + rac{a_k}{A_k} v_k, \end{aligned}$$

where $A_k = \sum_{i=0}^k a_i = A_{k-1} + a_k$.

Observe that $v_k \in \mathcal{X}$ by definition, hence

$$x_{k+1} = \left(1 - \frac{a_k}{A_k}\right) x_k + \frac{a_k}{A_k} v_k \in \mathcal{X}, \qquad orall k$$

by convexity of \mathcal{X} and induction.

3 Convergence rate of Frank-Wolfe

We introduce a new style of analysis.

- 1. We will maintain an upper bound $U_k \ge f(x_{k+1})$ and a lower bound $L_k \le f(x^*)$. Consequently, the difference $G_k := U_k L_k$ is an upper bound on the optimality gap $f(x_{k+1}) f(x^*)$.
- 2. Recall that $A_k := \sum_{i=0}^k a_i$, which is strictly increasing in *k*. We will show that

$$A_k G_k \le A_{k-1} G_{k-1} + E_k,$$

where E_k is some "error" term. This implies that

$$G_k \le \frac{A_0 G_0 + \sum_{i=1}^k E_i}{A_k}.$$

3. We will choose $\{a_k\}$ so that $A_0G_0 + \sum_{i=1}^k E_i$ grows slowly with *k* compared to A_k , hence G_k converges to 0 quickly.

Let us apply the above strategy to FW.

Upper bound: Simply take $U_k = f(x_{k+1})$. Then

$$A_k U_k - A_{k-1} U_{k-1} = A_k f(x_{k+1}) - A_{k-1} f(x_k).$$

Lower bound: We have

$$f(x^*) \ge \frac{1}{A_k} \sum_{i=0}^k a_i \Big(f(x_i) + \langle \nabla f(x_i), x^* - x_i \rangle \Big)$$

$$\text{convexity of } f \text{ weighted average of lower bounds is also a lower bound}$$

$$\ge \frac{1}{A_k} \sum_{i=0}^k a_i f(x_i) + \frac{1}{A_k} \sum_{i=0}^k a_i \min_{u \in \mathcal{X}} \langle \nabla f(x_i), u - x_i \rangle$$

$$= \frac{1}{A_k} \sum_{i=0}^k a_i f(x_i) + \frac{1}{A_k} \sum_{i=0}^k a_i \langle \nabla f(x_i), v_i - x_i \rangle$$

$$\text{definition of } v_i$$

$$=: L_k.$$

Then

$$A_kL_k - A_{k-1}L_{k-1} = a_k f(x_k) + a_k \left\langle \nabla f(x_k), v_k - x_k \right\rangle.$$

Evolution of A_kG_k : Define $D := \max_{x,y \in \mathcal{X}} \|x - y\|_2$, which is the diameter of \mathcal{X} . Then for $k \ge 1$:

$$\begin{aligned} A_{k}G_{k} - A_{k-1}G_{k-1} \\ &= (A_{k}U_{k} - A_{k-1}U_{k-1}) - (A_{k}L_{k} - A_{k-1}L_{k-1}) \\ &= A_{k} (f(x_{k+1}) - f(x_{k})) - a_{k} \langle \nabla f(x_{k}), v_{k} - x_{k} \rangle \\ &\leq \widetilde{A_{k}} \langle \nabla f(x_{k}), x_{k+1} - x_{k} \rangle + \frac{A_{k}L}{2} ||x_{k+1} - x_{k}||_{2}^{2} - \widetilde{a_{k}} \langle \nabla f(x_{k}), v_{k} - x_{k} \rangle \\ &\leq \widetilde{A_{k}} \langle \nabla f(x_{k}), x_{k+1} - x_{k} \rangle + \frac{A_{k}L}{2} ||x_{k+1} - x_{k}||_{2}^{2} - \widetilde{a_{k}} \langle \nabla f(x_{k}), v_{k} - x_{k} \rangle \\ &\leq \widetilde{A_{k}} ||v_{k} - x_{k}||_{2}^{2} \\ &\leq \frac{a_{k}^{2}L}{2A_{k}} D^{2}, \qquad \longleftarrow \text{ this is } E_{k} \end{aligned}$$
(1)

where (i) holds because

$$x_{k+1} = \frac{A_{k-1}}{A_k} x_k + \frac{a_k}{A_k} v_k \iff A_k(x_{k+1} - x_k) = a_k(v_k - x_k) \implies x_{k+1} - x_k = \frac{a_k}{A_k}(v_k - x_k).$$

(Exercise) Using similar argument as above, verify yourself that

$$A_0 G_0 \le \frac{a_0^2 L}{2A_0} D^2.$$
 (2)

Final bound: Summing (1) over *k* and (2), we get

$$A_k G_k \le \sum_{i=0}^k \frac{a_i^2 L}{2A_i} D^2$$
$$\implies f(x_{k+1}) - f(x^*) \le G_k \le \frac{LD^2}{2} \cdot \frac{1}{A_k} \sum_{i=0}^k \frac{a_i^2}{A_i}.$$

We want to choose $\{a_i\}$ to make RHS to decay fast with *k*. Different choices work, but whenever you see something like $\frac{a_i^2}{A_i}$, you should try $a_i \propto i \implies A_i \propto i^2$, $\frac{a_i^2}{A_i} \approx 1$. In particular, setting $a_i = i + 1$, we have $A_i = \frac{(i+1)(i+2)}{2}$ and hence

$$f(x_{k+1}) - f(x^*) \le \frac{LD^2}{(k+1)(k+2)} \underbrace{\sum_{i=0}^k \frac{2(i+1)^2}{(i+1)(i+2)}}_{\le 2(k+1)} \le \frac{2LD^2}{k+2}.$$

Therefore, we get an $O\left(\frac{LD^2}{k}\right)$ convergence rate. Equivalently, FW achieves $f(x_k) - f(x^*) \le \epsilon$ after at most $O\left(\frac{LD^2}{\epsilon}\right)$ iterations.

4 Lower bound

Is it possible to beat FW? Not in the worst case, if we are only accessing X via a linear optimization oracle.

Theorem 1. Consider any algorithm that accesses the feasible set \mathcal{X} only via a linear optimization oracle. There exists an L-smooth convex function function $f : \mathbb{R}^d \to \mathbb{R}$ such that this algorithm requires at least

$$\min\left\{\frac{d}{2},\frac{LD^2}{16\epsilon}\right\}$$

iterations (i.e., calls to the linear optimization oracle) to construct a point $\hat{x} \in \mathcal{X}$ *with* $f(\hat{x}) - \min_{x \in \mathcal{X}} f(x) \leq \epsilon$ *. The lower bound applies even if f is strongly convex.*

Proof sketch. Take $f(x) = \frac{1}{2} ||x||_2^2$ and $\mathcal{X} = \left\{x \in \mathbb{R}^d : x \ge 0, \sum_{i=1}^d x_i = 1\right\}$ (the probability simplex). Note that the smoothness parameter of f is L = 1, the diameter of \mathcal{X} is D = 2, and f is strongly convex. Moreover, the optimal solution and value are

$$x^* = \frac{1}{d}\mathbf{1} = \frac{1}{d}\sum_{i=1}^d e_i, \qquad f(x^*) = \frac{1}{2d},$$

where $e_i = (0, ..., 0, 1, 0, ..., 0)^{\top}$ denotes the *i*-th standard basis vector.

Linear optimization over the polytope \mathcal{X} returns one of its vertex e_i . After k iterations, one would only uncover k basis vectors $e_{i_1}, e_{i_2}, \ldots, e_{i_k}$. The best solution one can construct from them is $\hat{x} = \frac{1}{k} \sum_{i=1}^{k} e_{i_i}$, hence

$$f(\hat{x}) - f(x^*) \ge \frac{1}{2} \left(\frac{1}{\min\{k, d\}} - \frac{1}{d} \right).$$

To make the RHS $\leq \epsilon$, we need $k \geq \min\left\{\frac{d}{2}, \frac{1}{4\epsilon}\right\} = \min\left\{\frac{d}{2}, \frac{LD^2}{16\epsilon}\right\}$.

See Lan '13 for the complete proof.

5 Additional remarks

FW was out of favor for a long time, as it has sublinear convergence even when f is strongly convex. However, there has been a recent upsurge of activity on FW.

- A sublinear rate is acceptable in many machine learning and data science problems with large-scale and noisy data.
- The optimal solution v_k of linear optimization lies at a vertex of the feasible set \mathcal{X} . Such a solution often has certain *sparsity* properties not possessed by projection onto \mathcal{X} . Sparsity often leads to better computational and statistical efficiency. For example:
 - When X is the probability simplex or l₁ ball, each v_i is 1-sparse (has only 1 nonzero entry). Consequently, the iterate x_k of FW is k-sparse since it is a convex combination of {v₁,...,v_k}.
 - The nuclear norm $||x||_{nuc}$ of a matrix x is defined as the sum of its singular values. When $\mathcal{X} = \{x \in \mathbb{R}^{d \times d} : ||x||_{nuc} \leq R\}$ is the nuclear norm ball, each v_i is a rank-1 matrix, hence x_k has rank at most k.
- Conservative Policy Iteration (CPI), a basic algorithm in Reinforcement Learning, is an incarnation of FW. See this short paper on the connection between several reinforcement learning and constrained optimization algorithms (including CPI and FW).