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Lecture 16: Frank-Wolfe (aka Conditional Gradient) Method

Yudong Chen
1 Setup
Consider the constrained problem
mi)r} f(x), P)
xe

We still assume that f is L-smooth and convex, and X is closed, convex and non-empty.

In many settings, computing projection onto X’ is expensive, but linear optimization min,cy ¢ ' x

is easy. This is typical when X is a polytope {x € R? : ax < b;,i =1,...,m}.

Examples:

e Probability simplex and ¢; ball: Projection uses ©(d logd) arithmetics operations (sorting).
Linear optimization oracle only takes ®(d) (finding the smallest element of the vector c). This
is not a dramatic difference, but linear optimization has other benefits such as sparsity of
solution. See Section 5.

¢ For some polytopes, projection (exactly) is computationally hard, but linear optimization can
be done in poly-time. E.g., matching polytope for a general graph with | V| vertices has ~ 2!V
constraints, but linear optimization is tractable (e.g., using Edmonds” algorithm).

Frank-Wolfe (FW) method uses a linear optimization oracle instead of a projection oracle.

2 Frank-Wolfe method

Algorithm 1 Frank-Wolfe

¢ Input: initial point xo € X, algorithm parameters ay > 0,k =0,1,...

e Fork=0,1,...
vy = argmin (V f(x;), u),
ueX
Ar_ a
Xk+1 = flklxk + A*I;Uk,

where A = Zf-‘:O a; = Ax_1+ a.

Observe that v, € X by definition, hence

_(1_ % i3
Xk = (1 Ak) X + Akvk e X, vk

by convexity of X and induction.
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3 Convergence rate of Frank-Wolfe

We introduce a new style of analysis.

1. We will maintain an upper bound Uy > f(xy;1) and a lower bound Ly < f(x*). Consequently,
the difference Gy := Uy — Ly is an upper bound on the optimality gap f(x1) — f(x*).

2. Recall that Ay := Zi'(:o a;, which is strictly increasing in k. We will show that
ArGy < A 1Gr1 + Ey,
where Ej is some “error” term. This implies that

< AoGo + Y5, Ei_

Gi A,

3. We will choose {a;} so that AgGy + Y, E; grows slowly with k compared to Ay, hence Gy
converges to 0 quickly.

Let us apply the above strategy to FW.

Upper bound:  Simply take Uy = f(x4.1). Then
Al — Ag-1Ux—1 = Arf (xk41) — Ar—1f (xx)-

Lower bound: We have

% 1 k % vexity of
f(x ) > A7k . Oai (f(xl) + <vf(xi)'x - xi>) weighted average of lco(zi/lefgloz,lr?dsfis also a lower bound
1=
1 1 &
> A ;)alf(xz) + A l;)aimm (Vf(xi),u—x;)
1 & 1 &
= Y aif(x;) + = Y ;i (Vf(xi), 0 — x;) definition of v;
k i=p ki=o
= Lk-
Then

AkLk — Akflkal = akf(xk) + 753 <Vf(xk),vk — xk> .

Evolution of A;G:  Define D := max, yex ||x — y||,, which is the diameter of X'. Then for k > 1:

AxGr — Ax-1Gir—
= (AU — Ag—1Uk—1) — (AxLg — Ax—1Lk-1)

=Ak (f (xx1) = f(x0)) — a (V f (x0), v — %) Ap1 +ag = Ay
AL
<A VFR = 1) + = % — xill; — o (VFxhoe=xg)  smoothness of f
2
0 4L 2
B2 llox =l
a2L
_—ZAkD , +— this is Ej (1)
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where (i) holds because

Ak

aj k
X1 = X+ 50k = Ap(Xpp1 — %) = a(0p — X)) = X1 — X = 5 (0 — X).
Ak Ak Ag
(Exercise) Using similar argument as above, verify yourself that
agL
ApGy < =2=D2. ()

2A9

Final bound: Summing (1) over k and (2), we get

k 2
asL
A <Y 1-p?
ka_; 2AiD
i=0
LD? 1 KX 42
= f(x ) <G < — - — Y L,
flon) = f(6) S Ge< == Vo

We want to choose {4;} to make RHS to decay fast with k. Different choices work, but whenever
2

2
you see something like %"i, you should try a; « i = A; « i2, %ii ~ 1. In particular, setting

a;=1+1,wehave A; = % and hence

D2 koo2(i+1)? 2LD?
o < :
fre) = f(x7) < (k+1 )(k +2) l;) i+1)(i+2) ~ k+2

<2(k+1)

Therefore, we get an O <LTD2) convergence rate. Equivalently, FW achieves f(x;) — f(x*) < € after
at most O <L?D2) iterations.

4 Lower bound

Is it possible to beat FW? Not in the worst case, if we are only accessing X via a linear optimization
oracle.

Theorem 1. Consider any algorithm that accesses the feasible set X only via a linear optimization oracle.
There exists an L-smooth convex function function f : RY — R such that this algorithm requires at least

d LD?
min
2" 16e
iterations (i.e., calls to the linear optimization oracle) to construct a point £ € X with f(£) —minycy f(x) <
€. The lower bound applies even if f is strongly convex.

Proof sketch. Take f(x) = 1 | x||3 and X = {x ERY:x>0,Y%  x = 1} (the probability simplex).
Note that the smoothness parameter of f is L = 1, the diameter of X' is D = 2, and f is strongly
convex. Moreover, the optimal solution and value are

1& §
—H;ei/ fx) =52
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where ¢; = (0,...,0,1,0,...,0) " denotes the i-th standard basis vector.

Linear optimization over the polytope X returns one of its vertex e;. After k iterations, one
would only uncover k basis vectors e;,, ¢;,, .. ., e;,. The best solution one can construct from them is
N k
£=1 Yi_q ei, hence

1 1 1
£) — > (—— 2 ).
f&) = fx7) 2 2 <mm{k d} d>
d 1 d LD?
To make the RHS < €, we need k > min { 3, 4 5/ Gee (-
See Lan "13 for the complete proof. O

5 Additional remarks

FW was out of favor for a long time, as it has sublinear convergence even when f is strongly convex.
However, there has been a recent upsurge of activity on FW.

* A sublinear rate is acceptable in many machine learning and data science problems with
large-scale and noisy data.

¢ The optimal solution vj of linear optimization lies at a vertex of the feasible set X'. Such a
solution often has certain sparsity properties not possessed by projection onto X'. Sparsity
often leads to better computational and statistical efficiency. For example:

— When X is the probability simplex or ¢; ball, each v; is 1-sparse (has only 1 nonzero
entry). Consequently, the iterate x; of FW is k-sparse since it is a convex combination of
{01, . ,Z)k}.

— The nuclear norm ||x||
X ={xe¢ R4 |||
x) has rank at most k.

of a matrix x is defined as the sum of its singular values. When
< R} is the nuclear norm ball, each v; is a rank-1 matrix, hence

nuc

nuc

¢ Conservative Policy Iteration (CPI), a basic algorithm in Reinforcement Learning, is an
incarnation of FW. See this short paper on the connection between several reinforcement
learning and constrained optimization algorithms (including CPI and FW).


https://arxiv.org/abs/1309.5550
https://arxiv.org/pdf/1910.08476.pdf
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