
UW-Madison CS/ISyE/Math/Stat 726 Spring 2025

Lecture 17: Nonsmooth Optimization

Yudong Chen

All methods we have seen so far work under the assumption that the objective function f is
smooth and in particular differentiable. In this lecture, we consider nonsmooth functions.

Examples include the absolute value f (x) = |x| and more generally the ℓ1 norm f (x) =
∥x∥1 = ∑d

i=1 |x(i)| = ∑d
i=1 max {x(i),−x(i)},1 as well as the so-called Rectified Linear Unit (ReLU)

f (x) = max {x, 0}. In general, the maximum of (finitely many) smooth functions is a nonsmooth
function.

1 Nonsmooth optimization

Consider the problem
min
x∈X

f (x). (P)

Assumptions:

• f is M-Lipschitz continuous for some M ∈ (0, ∞), i.e.,

| f (x)− f (y)| ≤ M ∥x − y∥ , ∀x, y ∈ dom( f ),

under some norm ∥·∥, whose dual norm is ∥·∥∗. Here, ∥·∥ can be an arbitrary norm. Later
when we discuss the projected subgradient descent method, we will restrict to the ℓ2 norm.

• f is convex and minimized by some x∗ ∈ argminx∈X f (x).

• X ⊆ Rd is closed, convex and non-empty, and we can efficiently compute projection onto X .

In this setting, f is not necessarily differentiable. But, it is subdifferentiable.

2 Subdifferentiability

Definition 1. We say that a convex function f : Rd → R̄ is subdifferentiable at x ∈ dom( f ) if there
exists a vector gx ∈ Rd such that

∀y ∈ Rd : f (y) ≥ f (x) + ⟨gx, y − x⟩ .

The vector gx is called a subgradient of f at x. The set of all subgradients of f at x is called the
subdifferential of f at x and denoted by ∂ f (x).

1In this lecture, x(i) denotes the i-th coordinate of the vector x
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Example 1. Let f (x) = |x| be the absolute value function. Then

∂ f (x) =


{1} x > 0
{−1} x < 0
[−1, 1] x = 0

Exercise 1. What is ∂ f (x) for the function f (x) = max{x, 0}?

One can show that if f is convex and differentiable, then ∂ f (x) = {∇ f (x)} is a singleton.

2.1 Optimality condition

For a differentiable convex function f , we know from previous lectures that x∗ is a minimizer
if and only if ∇ f (x∗) = 0. The following theorem provides a generalization to potentially non-
differentiable functions.

Theorem 1. For a convex function f , a point x∗ is a minimizer if and only if 0 ∈ ∂ f (x∗).

Proof. Observe that

0 ∈ ∂ f (x∗)
⇐⇒ f (y) ≥ f (x∗) + ⟨0, y − x∗⟩ , ∀y by Definition 1
⇐⇒x∗ is a minimizer

2.2 Properties of subdifferential (optional)

The subdifferential has many important properties. We discuss a few of them below without proof;
see Wright-Recht Sections 8.2–8.4 for more.

Fact 1. Every convex lower semicontinuous function is subdifferentiable everywhere on the interior its
domain.

Example 2. Let IX (x) =

{
0, x ∈ X ,
∞, x /∈ X ,

be the indicator function of a closed convex nonempty set

X . Then for each x ∈ X , ∂IX (x) = NX (x), where NX (x) is the normal cone at x.

For smooth functions, the gradient has a linearity property: ∇(a f + bh)(x) = a∇ f (x) + b∇h(x).
A similar property holds for the subdifferential.

Fact 2 (Linearity). For any two convex functions f , h and any positive constants a, b, we have

∂(a f + bh)(x) = a∂ f (x) + b∂(x) =
{

ag + bg′ : g ∈ ∂ f (x), g′ ∈ ∂h(x)
}

for x in the interior of dom( f ) ∩ dom(g).
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Exercise 2. What is ∂ f (x) for the ℓ1 norm f (x) = ∥x∥1 := ∑d
i=1 |xi|?

With the above facts, we can unify the first-order optimality conditions for constrained and
unconstrained problems:

0 ∈ ∂ ( f + IX (x))
⇐⇒0 ∈ ∇ f (x) + ∂IX (x) by Fact 2
⇐⇒−∇ f (x) ∈ ∂IX (x)
⇐⇒−∇ f (x) ∈ NX (x) by Exercise 2

2.3 Lipschitz continuity

The theorem below relates the subgradients and Lipschitz continuity.

Theorem 2. Let f : Rd → R̄ be a convex function. f is M-Lipschitz-continuous w.r.t a norm ∥·∥ if and
only if

(∀x ∈ dom( f )) (∀gx ∈ ∂ f (x)) : ∥gx∥∗ ≤ M.

Proof. =⇒ direction. Suppose f is M-Lipschitz. Fix an arbitrary x and an arbitrary gx ∈ ∂ f (x). By
definition of subgradient and the Lipschitz property, we have

⟨gx, u⟩ ≤ f (x + u)− f (x) ≤ M ∥u∥ , ∀u,

hence

∥gx∥∗ = max
u:∥u∥=1

⟨gx, u⟩ definition of dual norm

≤ max
u:∥u∥=1

M ∥u∥ = M.

⇐= direction. Assume that (∀x ∈ dom( f )) (∀gx ∈ ∂ f (x)) : ∥gx∥∗ ≤ M. Then for all y:

f (y) ≥ f (x) + ⟨gx, y − x⟩
=⇒ f (x)− f (y) ≤ ⟨gx, x − y⟩ ≤ ∥gx∥∗ ∥x − y∥ ≤ M ∥x − y∥ .

Switching the roles of x and y gives

f (y)− f (x) ≤
〈

gy, y − x
〉
≤
∥∥gy
∥∥
∗ ∥y − x∥ ≤ M ∥y − x∥ .

Combining gives | f (x)− f (y)| ≤ M ∥x − y∥.

3 Projected subgradient descent

For the rest of the lecture, we assume f is M-Lipschitz w.r.t. the Euclidean ℓ2 norm ∥·∥2.
We consider the following projected subgradient descent (PSubGD) method:

xk+1 = argmin
y∈X

{
ak ⟨gxk , y − xk⟩+

1
2
∥y − xk∥2

2

}
= PX (xk − akgxk) ,

where one may take any subgradient gxk from the set ∂ f (xk), and ak > 0 is the stepsize.
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Without smoothness, we cannot get a descent lemma. In particular, it is not necessarily true that
f (xk+1) ≤ f (xk). Nevertheless, we can still argue about convergence for the (weighted) average of
the iterates, defined as

xout
k :=

1
Ak

k

∑
i=0

aixi,

where Ak := ∑k
i=0 ai.

3.1 Convergence rate

We follow the proof strategy that is introduced in the Frank-Wolfe lecture.
General strategy:

1. Maintain an upper bound Uk ≥ f (xout
k ) and a lower bound Lk ≤ f (x∗).

2. With Gk := Uk − Lk ≥ f (xout
k )− f (x∗), show that

AkGk − Ak−1Gk−1 ≤ Ek =⇒ Gk ≤
A0G0 + ∑k

i=1 Ei

Ak
.

3. Choose {ak} so that the above right hand decays to 0 fast.

By subdifferentiability, we have the lower bound

Lk :=
1

Ak

k

∑
i=0

ai ( f (xi) + ⟨gxi , x∗ − xi⟩) ≤ f (x∗).

By convexity we have the upper bound

Uk :=
1

Ak

k

∑
i=0

ai f (xi) ≥ f

(
1

Ak

k

∑
i=0

aixi

)
= f (xout

k ).

Hence f (xout
k )− f (x∗) ≤ Uk − Lk =: Gk. It follows that

AkGk − Ak−1Gk−1 = −ak ⟨gxk , x∗ − xk⟩
= ak ⟨gxk , xk+1 − x∗⟩+ ak ⟨gxk , xk − xk+1⟩ .

Recall xk+1 = argminy∈X

{
ak ⟨gxk , y⟩+ 1

2 ∥y − xk∥2
2

}
= PX (xk − akgxk). By first-order optimal-

ity condition of xk+1 (equivalently, the minimum principle for projection):

⟨xk+1 − xk + akgxk , u − xk+1⟩ ≥ 0, ∀u ∈ X .

In particular, for u = x∗:

ak ⟨gxk , xk+1 − x∗⟩ ≤ ⟨xk+1 − xk, x∗ − xk+1⟩

=
1
2
∥xk − x∗∥2

2 −
1
2
∥xk+1 − x∗∥2

2 −
1
2
∥xk+1 − xk∥2

2 ,

4



UW-Madison CS/ISyE/Math/Stat 726 Spring 2025

where we use the 3-point identity/law of cosine. It follows that

AkGk − Ak−1Gk−1 ≤1
2
∥xk − x∗∥2

2 −
1
2
∥xk+1 − x∗∥2

2

− 1
2
∥xk+1 − xk∥2

2 + ak ⟨gxk , xk − xk+1⟩

≤1
2
∥xk − x∗∥2

2 −
1
2
∥xk+1 − x∗∥2

2

− 1
2
∥xk+1 − xk∥2

2 + ak M ∥xk − xk+1∥2 Cauchy-Schwarz, ∥gxk∥2 ≤ M

≤1
2
∥xk − x∗∥2

2 −
1
2
∥xk+1 − x∗∥2

2 +
a2

k M2

2
. because − p2

2
+ pq ≤ q2

2
. (1)

On the other hand, we also have

A0G0 = a0 ⟨gx0 , x0 − x∗⟩ ≤
a2

0M2

2
+

1
2
∥x0 − x∗∥2

2 −
1
2
∥x1 − x∗∥2

2 .

Summing over k and telescoping, we get

AKGK ≤ 1
2
∥x0 − x∗∥2

2 +
K

∑
k=0

a2
K M2

2
,

hence

f (xout
K )− f (x∗) ≤ GK ≤ ∥x0 − x∗∥2

2
2AK

+
M2 ∑K

k=0 a2
k

2AK
. (2)

It remains to choose the stepsize sequence {ak} to get a good convergence bound. Consider
using a constant stepsize ak = C, ∀k, then AK = C(K + 1). Then

f (xout
K )− f (x∗) ≤ ∥x0 − x∗∥2

2
2C(K + 1)

+
M2C

2
.

The RHS is minimized when the two RHS terms are balanced:

∥x0 − x∗∥2
2

C(K + 1)
=

M2C
2

⇐⇒ C =
∥x0 − x∗∥2

M
√

K + 1
.

We conclude that with the choice ak =
∥x0−x∗∥2
M
√

K+1
, ∀k, it holds that

f (xout
K )− f (x∗) ≤ M ∥x0 − x∗∥2√

K + 1
.

This is slower than the f (xK+1)− f (x∗) ≲ 1
K rate for minimizing a smooth convex function.

3.2 Other considerations

The above choice of {ak} and the final bound require:

(i) knowing ∥x0 − x∗∥2 ;

(ii) fixing the total number of iterations K before setting {ak}.
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(iii) knowing (an upper bound of) the Lipschitz constant M.

To address issue (i) , note that we usually know (an upper bound of) the diameter of X , i.e., D :=
maxx,y∈X ∥x − y∥2, which satisfies ∥x0 − x∗∥ ≤ D. If D is finite, we can choose ak = D

M
√

K+1
, ∀k.

Plugging into (2), we get

f (xout
K )− f (x∗) ≤

D2 + M2 ∑K
k=0 a2

k
2AK

≤ DM√
K + 1

.

To address issue (ii), we could instead use a diminishing stepsize ak =
D

M
√

k+1
, which gives a

so-called “anytime algorithm” with the slightly worse bound

f (xout
K )− f (x∗) = O

(
DM log K√

K + 1

)
.

Finally, if D is unknown/unbounded and if we want to address issue (iii), then we can use
ak =

1√
k+1

, which does not require knowledge of D nor M. In this case we have

f (xout
K )− f (x∗) = O


(
∥x0 − x∗∥2

2 + M2
)

log K
√

K + 1

 .

4 Lower bounds (optional)

The O
(

1√
K

)
rate above is order-wise optimal for first-order methods in a sense similar to the

optimality of AGD. Consider a first-order method that generates iterates x1, x2, x3... satisfying
x1 = 0 and

xk+1 ∈ Lin {g1, . . . gk} , ∀k ≥ 1,

where gk ∈ ∂ f (xk) is an arbitrary subgradient at xk. Note that the iterates xk and xout
k of PSubGD

both satisfy this assumption. We have the following lower bound.

Theorem 3. There exists a convex and M-Lipschitz function f such that for any first-order method satisfying
the above assumption, we have

min
1≤k≤K

f (xk)− f (x∗) ≥ M ∥x∗ − x1∥2

2(1 +
√

K)
.

Proof. Consider a function f : RK → R defined as

f (x) = γ max
1≤i≤K

x(i) +
1
2
∥x∥2

2 ,

where γ = M
√

K
1+

√
K

(which is ≈ M). Then

∂ f (x) = x + γ conv

{
ei : i ∈ argmax

1≤j≤K
x(j)

}
,

where ei ∈ RK is the ith standard basis vector and conv{·} denotes the convex hull.
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A minimizer of f is x∗ with x∗(i) = − γ
K , ∀i, because 0 ∈ ∂ f (x∗) (Theorem 1). Hence

∥x∗ − x1∥2 = ∥x∗∥2 =
γ√
K

=
M

1 +
√

K
(3)

and the optimal value is

f (x∗) = −γ2

K
+

1
2

γ2

K
= − M2

2(1 +
√

K)2
.

Note that if ∥x∥2 ≤ γ√
K

, then ∥g∥2 ≤ γ√
K
+ γ = M, ∀g ∈ ∂ f (x). By Theorem 2 we know that f is

M-Lipschitz on the ball
{

x : ∥x∥2 ≤ γ√
K

}
.

Under our assumption for first-order methods, it is easy to see that

xk ∈ Lin {g1, . . . gk−1} ⊆ Lin {e1, . . . , ek−1} .

Therefore, for all k ≤ K, we have xk(K) = 0 and thus f (xk) ≥ 0. It follows that the optimality gap
is lower bounded as

f (xk)− f (x∗) ≥ 0 − M2

2(1 +
√

K)2
=

M ∥x∗ − x1∥2

2(1 +
√

K)
,

where the last step follows from (3).

Appendices

A Summary of rates for first-order methods

(Sub)Gradient Descent Accelerated GD

convex, M-Lipschitz f (xout
k )− f ∗ ≤ M∥x0−x∗∥2√

k+1

L-smooth min0≤i≤k ∥∇ f (xi)∥2
2 ≤ 2L( f (x0)− f ∗)

k

convex, L-smooth f (xk)− f ∗ ≤ L∥x0−x∗∥2
2

2k ≤ 2L∥x0−x∗∥2
2

k2

m-strongly convex
L-smooth

f (xk)− f ∗ ≤
(
1 − m

L

)k
( f (x0)− f ∗) ≤

(
1 −

√m
L

)k
( f (x0)− f ∗)
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