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Lecture 17: Nonsmooth Optimization

Yudong Chen

All methods we have seen so far work under the assumption that the objective function f is
smooth and in particular differentiable. In this lecture, we consider nonsmooth functions.

Examples include the absolute value f(x) = |x| and more generally the ¢; norm f(x) =
x|l = X9 |x(i)| = £4_, max {x(i), —x(i)}," as well as the so-called Rectified Linear Unit (ReLU)
f(x) = max {x,0}. In general, the maximum of (finitely many) smooth functions is a nonsmooth
function.

1 Nonsmooth optimization

Consider the problem

min f(x). (P)

xeX

Assumptions:

* fis M-Lipschitz continuous for some M € (0, ), i.e.,

f(x) = fW)| <M|x—yll, Vxy € dom(f),

under some norm ||-||, whose dual norm is ||-||,. Here, ||-|| can be an arbitrary norm. Later
when we discuss the projected subgradient descent method, we will restrict to the ¢, norm.

* fis convex and minimized by some x* € argmin__, f(x).
e X C R%is closed, convex and non-empty, and we can efficiently compute projection onto X'

In this setting, f is not necessarily differentiable. But, it is subdifferentiable.

2 Subdifferentiability

Definition 1. We say that a convex function f : R? — R is subdifferentiable at x € dom(f) if there
exists a vector g, € R4 such that

Yy eR?:  f(y) > f(x)+ (g y — ).

The vector g, is called a subgradient of f at x. The set of all subgradients of f at x is called the
subdifferential of f at x and denoted by of (x).

n this lecture, x(i) denotes the i-th coordinate of the vector x
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Example 1. Let f(x) = |x| be the absolute value function. Then

oo = [%|
{1} x>0
of(x) =¢{-1} x<0 . g
[-1,1] x=0
/‘:5(\/ x

vy fop = Feo+ <9, 9-x

Exercise 1. What is of(x) for the function f(x) = max{x,0}?

One can show that if f is convex and differentiable, then of (x) = {V f(x)} is a singleton.

2.1 Optimality condition

For a differentiable convex function f, we know from previous lectures that x* is a minimizer
if and only if Vf(x*) = 0. The following theorem provides a generalization to potentially non-
differentiable functions.

Theorem 1. For a convex function f, a point x* is a minimizer if and only if 0 € of (x*).
Proof. Observe that
0€af(x)
= f(y) > f(x*)+ 0,y —x*),Vy by Definition 1

<=x" is a minimizer

2.2 Properties of subdifferential (optional)

The subdifferential has many important properties. We discuss a few of them below without proof;
see Wright-Recht Sections 8.2-8.4 for more.

Fact 1. Every convex lower semicontinuous function is subdifferentiable everywhere on the interior its
domain.

0, xed, L :
X be the indicator function of a closed convex nonempty set
0, X p

X. Then for each x € X, dly(x) = Ny (x), where Ny (x) is the normal cone at x.

Example 2. Let [y(x) =

For smooth functions, the gradient has a linearity property: V(af +bh)(x) = aV f(x) + bVh(x).
A similar property holds for the subdifferential.

Fact 2 (Linearity). For any two convex functions f,h and any positive constants a, b, we have
o(af +bh)(x) = adf(x) +bo(x) = {ag+bg' : g € of (x),g" € oh(x)}

for x in the interior of dom(f) N dom(g).
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Exercise 2. What is 9f (x) for the ¢; norm f(x) = || x|, := Y9, |xi|?

With the above facts, we can unify the first-order optimality conditions for constrained and
unconstrained problems:

0€d(f+Iyv(x))

<=0¢€ Vf(x)+dly(x) by Fact 2
— — Vf(x) S BIX(x)
<= — Vf(x) € Ny(x) by Exercise 2

2.3 Lipschitz continuity
The theorem below relates the subgradients and Lipschitz continuity.

Theorem 2. Let f : R — R be a convex function. f is M-Lipschitz-continuous w.r.t a norm ||-| if and

only if
(Vx € dom(f)) (Vgs € 3f(x)) : [igall, < M.

Proof. = direction. Suppose f is M-Lipschitz. Fix an arbitrary x and an arbitrary g, € df(x). By
definition of subgradient and the Lipschitz property, we have

(gx,u) < f(x+u) = f(x) < Mlul|, Vu,
hence
llgxll, = uﬁﬁfﬁi : (gx,u) definition of dual norm
< u:IHI:t&ﬁ):(lM |u|| = M.

<= direction. Assume that (Vx € dom(f)) (Vgx € 9f(x)) : ||gx||, < M. Then for all y:

fy) = f(x) +(gxy — x)
= f(x) = f(y) < (v x—y) < gl lIx—yll < Mlx—yl.

Switching the roles of x and y gives

f) = f(x) < (v = x) < lgyll. Nly = x]| < Mly = 2]
Combining gives |f(x) — f(y)| < M|x —y||. O

3 Projected subgradient descent

For the rest of the lecture, we assume f is M-Lipschitz w.r.t. the Euclidean ¢, norm ||-|,.
We consider the following projected subgradient descent (PSubGD) method:

. 1 2
X1 = argmin {ay (g4, — ) + 5 1y — %3
yeX

= Py (X — m8x,)

where one may take any subgradient g, from the set df(xy), and a; > 0 is the stepsize.

3
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Without smoothness, we cannot get a descent lemma. In particular, it is not necessarily true that
f(xk11) < f(xg). Nevertheless, we can still argue about convergence for the (weighted) average of
the iterates, defined as

1 X
t._
xgu . Af Z[lixi,
ki=0
where Ay := Zi'(:o a;.

3.1 Convergence rate

We follow the proof strategy that is introduced in the Frank-Wolfe lecture.

General strategy:
1. Maintain an upper bound U; > f(x{") and a lower bound Ly < f(x*).
2. With Gy := Uy — Ly > f(x9") — f(x*), show that

AoGo+ Y5 E;

ArGp — Ag1Gr1 S B = G < 1
k

3. Choose {ax} so that the above right hand decays to 0 fast.

By subdifferentiability, we have the lower bound

k
Lii= Y (F(xi) + (g, 5" — 1)) < F(x").
A i=0

By convexity we have the upper bound

1 & 1 ¢
Uy = A—kl;oaif(xi) > f <Ak i;)aixz) = f(xg").

Hence f(x") — f(x*) < Uy — Ly =: Gy. It follows that

ArGr — Ak1Gro1 = —ax (Qur X° — Xi)

= A5 (S X1 — X)) + Ak (s Xk — Xiet1) -

Recall xi11 = argmin, ., {ak (gvoy) + 2 lly— kag} = Py (xx — axgx, ). By first-order optimal-
ity condition of x4, (equivalently, the minimum principle for projection):

(X1 — X + AQr U — Xpp1) >0, Vu e X.
In particular, for u = x*:
A (G X1 — X°) < (X1 — X, X5 — Xpepq)

1 2 1 > 1 2
) [l — x*|5 — > | xk1 — x"|5 — > k1 — xx[5,
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where we use the 3-point identity /law of cosine. It follows that

1 1
AxGr = A Gt <55 [l = 27 = 5 e — 1713
1 2
— 5 1Ak+1 7 Akll2 k \&xxr Xk — Ak+1
5 Ixer = xill2 + a (g X — Xe41)
1 » 1 2
SEka—x*Hz—gIka+1—x*Hz

1
5 | k1 — ka% + arM || X — Xgpa ],
az M?
2

1 2 1 2
SE [k — x*l5 — 5 | xke1 — X[ +

On the other hand, we also have

Cauchy-Schwarz, ||y, <M

because —

aM?> 1 .
AoGo = ap (g, X0 — 1) < 05—+ 5 [|x0 — x|l ~
Summing over k and telescoping, we get
aKM2
AxGy < 3 3o — ¥ H2+Z >

hence

PR = () < G < 0

2
Iz =13, M2EE,

2Ak

p

2

q2

r < 1
7 TPI=5

2
HER

)

)

It remains to choose the stepsize sequence {4y} to get a good convergence bound. Consider

using a constant stepsize a; = C, Vk, then Ax = C(K + 1). Then

flag - foy < o=l

— 2C(K+1)
The RHS is minimized when the two RHS terms are balanced:

Ixo — x|l _ M2C

CK+1) 2 = €=

We conclude that with the choice a; = Ixo—x" |, ,Vk, it holds that

My K+

f(xlcéut) _f(x*) < \/m

This is slower than the f(xx+1) — f(x*) < + rate for minimizing a smooth convex function.

3.2 Other considerations
The above choice of {a;} and the final bound require:

(i) knowing ||xo — x*||,;

(i) fixing the total number of iterations K before setting {ay }.

5

2

|| xo —x*Hz‘
MK +1

M [|xo — x|,
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(iii) knowing (an upper bound of) the Lipschitz constant M.

To address issue (i) , note that we usually know (an upper bound of) the diameter of X, i.e., D :=
maxyyex [|x — yl|,, which satisfies ||xo — x*|| < D. If D is finite, we can choose a; = M\/%,Vk.

Plugging into (2), we get

D?+ M2y K a? DM
KOUt) _ £(y*) < k=0 "k < ]
D

To address issue (ii), we could instead use a diminishing stepsize a; = MV which gives a

so-called “anytime algorithm” with the slightly worse bound

fla - £l =0 (PREE ).

vK+1

Finally, if D is unknown/unbounded and if we want to address issue (iii), then we can use

ay = ﬁ, which does not require knowledge of D nor M. In this case we have

e o (o=l + M) tog K

4 Lower bounds (optional)

The O <ﬁ) rate above is order-wise optimal for first-order methods in a sense similar to the
optimality of AGD. Consider a first-order method that generates iterates x1, xp, x3... satisfying
x1 = 0and

Xr+1 € Lin {gl, .. ~gk}/ Vk > 1,
where g € of (x) is an arbitrary subgradient at x;. Note that the iterates x; and x"* of PSubGD
both satisfy this assumption. We have the following lower bound.

Theorem 3. There exists a convex and M-Lipschitz function f such that for any first-order method satisfying
the above assumption, we have

| o M -
i fl) = f0) 2 = e

Proof. Consider a function f : RK — R defined as

Fx) =7 max (i) + 5 ]2,

1<i<K

where ¢ = ﬁ‘\/ﬁ% (which is & M). Then

df(x) = x + yconv {ei ti € argmaxx(j)} ,

1<j<K

where ¢; € RX is the ith standard basis vector and conv{-} denotes the convex hull.

6
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A minimizer of f is x* with x*(i) = —%, Vi, because 0 € of (x*) (Theorem 1). Hence
] " v M
X —X = ||x = = 3

and the optimal value is

Note that if ||x||, < -, then [[g[|, < ﬁ + v = M,Vg € df(x). By Theorem 2 we know that f is
M-Lipschitz on the ball {x x]l, < %}

Under our assumption for first-order methods, it is easy to see that

xe € Lin{g1,...gk—1} C Lin{ey,...,ex_1}.

Therefore, for all k < K, we have x;(K) = 0 and thus f(xx) > 0. It follows that the optimality gap
is lower bounded as

M Ml
2(1+vK)?2  21+vVK) '

where the last step follows from (3). O

flxx) = f(x7) 20

Appendices

A Summary of rates for first-order methods

(Sub)Gradient Descent Accelerated GD
convex, M-Lipschitz flagt) — f* < %
L-smooth mingcici || V£ (xi)|; < 2
convex, L-smooth flxg) —f < L”%T?*‘@ < ZLHX%%JC*H%
| F) = < (1= 1) ) = £) | < (0= V) () =)
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