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Lecture 18: Stochastic Optimization

Yudong Chen

1 Setup

The algorithms we’ve seen so far have access to a first order oracle, which returns the exact
(sub)gradient at a given point, plus potentially the function value.

x ∈ X −→ 1st order
oracle

−→ gx ∈ ∂ f (x) (∇ f (x) if f is differentiable)
maybe also f (x)

Stochastic optimization: We are given a noisy version of the (sub)gradient:

x ∈ X −→ 1st order
stochastic oracle

−→ g̃(x, w)

Here g̃(x, w) is a stochastic estimate of some gx ∈ ∂ f (x), where w is a random variable representing
the randomness in the stochastic estimate.
Remark 1. Some models also assume access to stochastic estimates of the function value f (x). We
do not need it here.

1.1 Examples

Example 1. g̃(x, w) = gx + w, where w is additive noise due to, e.g., inaccurate measurements in
physical systems. Sometimes, the noise is added intentionally (e.g., for privacy).

Example 2. Finite sum minimization: Want to minimize

f (x) =
1
n

n

∑
i=1

fi(x)

and n is large. We can take g̃(x, w) = ∇ f ī(x), where ī is an integer sampled uniformly at random
from {1, 2, . . . , n}. Here w = ī.

More generally, we can take g̃(x, w) = 1
n ∑i∈S ∇ fi(x), where S is a random subset of {1, . . . n};

here w = S is sometimes called a mini-batch.

Example 3. Empirical risk minimization (ERM): We want to minimize

f (x) = E(a,b)∼Πdata
[l(x; a, b)] ,

but we do not know how to exactly compute the expectation above. Suppose we have collected n
data points (ai, bi) that come from the distribution Πdata. As an approximation we minimize the
empirical loss

femp(x) =
1
n

n

∑
i=1

l(x; ai; bi).

When n → ∞, femp → f . Here we view g̃(x, w) = ∇ femp(x) as a noisy estimate of ∇ f (x).
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1.2 Assumptions

Consider the problem
min
x∈X

f (x). (P)

We assume that

• f is convex and M-Lipschitz w.r.t. ∥·∥2. ( f may not be differentiable, but it is subdifferentiable)

• X is closed, convex and nonempty. The projection PX can be efficiently computed.

• For all x ∈ X , it holds that

(unbiased estimate) Ew [g̃(x, w)] = gx ∈ ∂ f (x),

(bounded variance) Ew

[
∥g̃(x, w)− gx∥2

2

]
≤ σ2 < ∞.

(1)

2 Stochastic (projected sub)gradient descent

Consider the following S-PSubGD algorithm:

xk+1 = argmin
u∈X

{
ak ⟨g̃(xk, wk), u − xk⟩+

1
2
∥u − xk∥2

2

}
= PX (xk − ak g̃(xk, wk)) ,

where ak > 0 is the stepsize to be chosen later.

2.1 Convergence analysis

In the sequel, we assume that w0, w1, . . . , wk, . . . are independent and identically distributed (i.i.d.).
We introduce the shorthands gk ≡ gxk (true subgradient) and g̃k ≡ g̃(xk, wk) (noisy subgradient).
As in the previous lecture, we analyze the averaged iterate xout

k := 1
Ak

∑k
i=0 aixi, where Ak :=

∑k
i=0 ai, and we use the same Uk, Lk and Gk:

upper bound: Uk :=
1

Ak

k

∑
i=0

ai f (xi) ≥ f (xout
k ),

lower bound: Lk :=
1

Ak

k

∑
i=0

ai f (xi) +
1

Ak

k

∑
i=0

ai ⟨gi, x∗ − xi⟩ ≤ f (x∗),

optimality gap bound: Gk := Uk − Lk = − 1
Ak

k

∑
i=0

ai ⟨gi, x∗ − xi⟩ ≥ f (xout
k )− f (x∗).

The analysis is similar to last lecture, except that we need to keep track of the stochastic error
gk − g̃k. We have

A0G0 = −a0 ⟨g0, x∗ − x0⟩ ,

and

AkGk − Ak−1Gk−1 = −ak ⟨gk, x∗ − xk⟩
= ak ⟨gk, xk − xk+1⟩+ ak ⟨gk, xk+1 − x∗⟩
= ak ⟨gk, xk − xk+1⟩+ ak ⟨g̃k, xk+1 − x∗⟩︸ ︷︷ ︸

similar to last lecture

+ ak ⟨gk − g̃k, xk+1 − x∗⟩︸ ︷︷ ︸
additional stochastic error

.
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The projection xk+1 = PX (xk − ak g̃k) satisfies the minimum principle:

⟨ak g̃k + xk+1 − xk, x∗ − xk+1⟩ ≥ 0,

hence

ak ⟨g̃k, xk+1 − x∗⟩ ≤ ⟨xk+1 − xk, x∗ − xk+1⟩

=
1
2
∥xk − x∗∥2

2 −
1
2
∥xk+1 − x∗∥2

2 −
1
2
∥xk − xk+1∥2

2 .

It follows that

AkGk − Ak−1Gk−1

≤ ak ⟨gk, xk − xk+1⟩+
(

1
2
∥xk − x∗∥2

2 −
1
2
∥xk+1 − x∗∥2

2 −
1
2
∥xk − xk+1∥2

2

)
︸ ︷︷ ︸

same as last lecture

+ak ⟨gk − g̃k, xk+1 − x∗⟩

≤
a2

k M2

2
+

1
2
∥xk − x∗∥2

2 −
1
2
∥xk+1 − x∗∥2

2︸ ︷︷ ︸
same as last lecture

+ak ⟨gk − g̃k, xk+1 − x∗⟩ .

Taking expectation of both sides, we get

E [AkGk − Ak−1Gk−1] ≤
1
2

E
[
∥xk − x∗∥2

2 − ∥xk+1 − x∗∥2
2

]
+

a2
k M2

2
+ akE [⟨gk − g̃k, xk+1 − x∗⟩] .

To compute the last term on the right hand side, we need some basic facts from probability,
including the linearity and independence property of expectation (reviewed at the end of this
document). Moreover, by the Law of Total Expectation,1 we can write

E [⟨gk − g̃k, xk+1 − x∗⟩] = E
[
E
[
⟨gk − g̃k, xk+1 − x∗⟩ | wk−1

0

]]
,

where wk−1
0 := (w0, . . . , wk−1) denotes all the previous randomness in iterations 0 through k − 1

(excluding wk). Let us compute the inner expectation:

E
[
⟨gk − g̃k, xk+1 − x∗⟩ | wk−1

0

]
=E

[
⟨gk − g̃k, xk+1⟩ | wk−1

0

]
E
[
⟨gk − g̃k, x∗⟩ | wk−1

0

]
= 0

as g̃k is unbiased; see (6)

=E
[
⟨gk − g̃k, PX (xk − ak g̃k)⟩ | wk−1

0

]
=E

[
⟨gk − g̃k, PX (xk − ak g̃k)− PX (xk − akgk)⟩ | wk−1

0

]
E
[
⟨gk − g̃k, PX (xk − akgk)⟩ | wk−1

0

]
= 0

as g̃k is unbiased and independent of xk and wk−1
0

see (7)

≤E
[
∥gk − g̃k∥2 · ∥PX (xk − ak g̃k)− PX (xk − akgk)∥2 | wk−1

0

]
Cauchy-Schwarz

≤E
[

ak ∥gk − g̃k∥2
2 | wk−1

0

]
PX is non-expansive

≤akσ2. bounded variance assumption

1Also known as the Law of Iterated Expectation, or Tower Rule
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It follows that

E [AkGk − Ak−1Gk−1] ≤
1
2

E
[
∥xk − x∗∥2

2 − ∥xk+1 − x∗∥2
2

]
+

a2
k

(
M2 + 2σ2)

2
.

Summing both sides over k and telescoping, we get the bound

E
[

f (xout
K )− f (x∗)

]
≤ E [GK]

≤
∥x0 − x∗∥2

2 +
(

M2 + 2σ2)∑K
k=0 a2

k
2AK

.

The expression on the right-hand side is the same as what we got the last time for projected
subgradient descent (PSubGD), except for having M2 + 2σ2 in place of M2. The rest of the analysis
is similar to that for PSubGD:

• Using constant stepsize ak =
∥x0−x∗∥2√

M2+2σ2
√

K+1
, ∀k, we get

E
[

f (xout
K )− f (x∗)

]
≤ ∥x0 − x∗∥2

√
M2 + 2σ2

√
K + 1

. (2)

Setting σ = 0 recovers the rate for PSubSGD from last lecture. Note that for first-order
method, the O(1/

√
K) rate is optimal even when we have access to exact gradients (see last

lecture).

• Same discussion about anytime algorithm, unknown/unbounded diameter of X , unknown
M, unknown σ2, etc.

3 Analysis of SGD in other settings (Optional)

In this section, we state without proof several additional convergence results for (projected) stochas-
tic (sub)gradient descent.2As before, we assume that f is convex and the stochastic gradient g(x, w)
is unbiased, but we will consider other additional properties of f and g(x, w).

3.1 Role of smoothness

Still assume that stochastic gradient has variance bounded by σ2; see equation (1). We make the
additional assumption that f is L-smooth (w.r.t. ∥·∥2). Let D := maxx,y∈X ∥x − y∥2 be the diameter
of X . With a constant stepsize ak =

1
L+(σ/D)

√
(K+1)/2

, ∀k, one can show that

E f
(

xout
K
)
− f (x∗) ≤ Dσ

√
2

K + 1
+

LD2

K + 1
. (3)

When K is large, the first term on the RHS dominates and thus we have an O(1/
√

K) rate. This
rate is essentially the same as the bound (2) for nonsmooth f . Therefore, smoothness does not offer
much benefit in the stochastic setting. In contrast, in the deterministic setting, smoothness leads to
the faster rates of O(1/K) (for GD) and O(1/K2) (for AGD).

2For details please see

• Section 6 of Sebastien Bubeck’s monograph.

• Chapter 5 of Wright and Recht, Optimization for Data Analysis.
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3.2 Role of strong convexity

Going back to the setting with M-Lipschitz f . Still assume that stochastic gradient has variance
bounded by σ2; see equation (1). We make the additional assumption that f is m-strongly convex
(w.r.t. ∥·∥2). Note that strong convexity and Lipschitzness can hold simultaneously only when X is
bounded. 3

For the diminishing stepsize ak =
2

m(k+2) , we have

E f

(
K

∑
k=0

2(k + 1)
(K + 1)(K + 2)

xk

)
− f (x∗) ≤ 2(M2 + σ2)

m(K + 2)
. (4)

This O(1/K) rate is better than the O(1/
√

K) rate for non-strongly convex f .

3.3 More general noise

We now consider a more general form of noise assumption: there exist some Lg ≥ 0 and B ≥ 0 such
that for all x ∈ X :

E
[
∥g(x, w)∥2

2

]
≤ L2

g ∥x − x∗∥2
2 + B2. (5)

We consider three cases.

3.3.1 Lg = 0, B > 0, convex f

This setting is a slight generalization of the previous assumption (1) of M-Lipschitz f and σ2-
bounded variance. In particular, the assumption (1) implies that

E
[
∥g(x, w)∥2

2

]
= ∥E[g(x, w)]∥2

2 + Ew

[
∥g̃(x, w)− gx∥2

2

]
= ∥gx∥2

2 + Ew

[
∥g̃(x, w)− gx∥2

2

]
≤ M2 + σ2.

Therefore, the more general assumption (5) is satisfied with Lg = 0 and B2 = M2 + σ2. In this case,

using the constant stepsize ak =
∥x0−x∗∥w

B
√

K+1
, ∀k, we have

E
[

f (xout
K )− f (x∗)

]
≤ ∥x0 − x∗∥2 B√

K + 1
.

This bound is essentially the same as the bound (2) proved earlier.

3.3.2 Lg > 0, B = 0, m-strongly convex f

In this setting, we have E
[
∥g(x, w)∥2

2

]
→ 0 = ∇ f (x∗) as x → x∗. That is, the stochastic gradient

becomes more and more accurate near x∗. Moreover, we have

L2
g ∥x − x∗∥2

2 ≥ E
[
∥g(x, w)∥2

2

]
≥ ∥E[g(x, w)]∥2

2 Jensen’s

= ∥∇ f (x)∥2
2 = ∥∇ f (x)−∇ f (x∗)∥2

2 , unbiased, ∇ f (x∗) = 0

3For a strongly convex function, its subgradient grows linearly away from x∗: ∥∇ f (x)∥2 ≥ m
2 ∥x − x∗∥2, hence

∥∇ f (x)∥ ≤ M cannot be over the entire Rd.
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so the gradient of f satisfies a “Lipschitz-like” assumption.
With a constant stepsize ak =

m
L2

g
, ∀k, we have

E ∥xK − x∗∥2
2 ≤

(
1 − m2

L2
g

)K

∥x0 − x∗∥2 .

We have geometric convergence thanks to strong convexity and the Lipschitz-like property. The
contraction factor is 1 − m2

L2
g
, which is worse than the 1 − m

L (for GD) and 1 −
√m

L (for AGD) factors

we saw in the deterministic setting with m-strong convexity and L-Lipschitz gradient.

3.3.3 Lg > 0, B > 0, m-strongly convex f

With a diminishing stepsize ak =
1

2m(L2
g/2m2+k) , we have

E ∥xK − x∗∥2
2 ≤ c0B2

2m(L2
g/2m2 + K)

.

For large K, this is an O(1/K) rate.

Appendix: Basic properties of expectation

Linearity Let X and Y be two random variables, and a, b be two (deterministic) numbers. Then

E [aX + bY] = aE [X] + bE [Y] .

Multiplicity under independence Let X and Y be two independent random variables. Then

E [XY] = E [X]E [Y] and E [X | Y] = E [X] .

These property hold for conditional expectation and random vectors as well. For example, we
have

E
[
⟨gk − g̃k, x∗⟩ | wk−1

0

]
=
〈

gk − E
[

g̃k | wk−1
0

]
, x∗
〉

. linearity

= ⟨gk − E [g̃k] , x∗⟩ independence

=
〈

gk − gk︸ ︷︷ ︸
=0

, x∗
〉

unbiased

= 0. (6)

and

E
[
⟨gk − g̃k, PX (xk − akgk)⟩ | wk−1

0

]
=
〈

E
[

gk − g̃k | wk−1
0

]
, E
[

PX (xk − akgk) | wk−1
0

]〉
independence

=
〈

gk − E
[

g̃k | wk−1
0

]
, E
[

PX (xk − akgk) | wk−1
0

]〉
linearity

=
〈

gk − E [g̃k] , E
[

PX (xk − akgk) | wk−1
0

]〉
independence

=
〈

gk − gk︸ ︷︷ ︸
=0

, E
[

PX (xk − akgk) | wk−1
0

] 〉
unbiased

=0. (7)
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