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Lecture 19: Basic Newton’s Method

Yudong Chen

1 Second-Order Optimization

From now on, we will assume X = Rd (unconstrained optimization) and f : Rd → R is twice
continuously differentiable.

Second-order oracle model:

x ∈ Rd −→ 2nd order
oracle

−→ f (x),∇ f (x),∇2 f (x).

Recall our general descent method:

xk+1 = xk + αk pk,

where αk is the stepsize and pk is a search direction. If pk satisfies ⟨pk,∇ f (xk)⟩ < 0, then it is called
a descent direction at xk.

In this and subsequent lectures, we focus on search directions of the form

pk = −B−1
k ∇ f (xk),

where Bk ≻ 0. Examples:

• Bk = I: standard gradient descent, considered before;

• Bk = ∇2 f (xk): Newton’s method;

• Bk = some approximation of ∇2 f (xk): quasi-Newton’s methods.

2 Basic Newton’s Method

The basic Newton’s (BN) method uses Bk = ∇2 f (xk) with a unit stepsize αk = 1, ∀k. That is,

xk+1 = xk −
(
∇2 f (xk)

)−1 ∇ f (xk). (BN)

This (BN) update can be interpreted in two ways.

Minimizer of second-order approximation: When ∇2 f (xk) ⪰ 0, one can verify that

xk+1 = argmin
y

{
f (xk) + ⟨∇ f (xk), y − xk⟩+

1
2
〈
∇2 f (xk)(y − xk), y − xk

〉}
.

We see that xk+1 minimizes the second-order Taylor expansion of f at xk. (Compare this with GD.)

1



UW-Madison CS/ISyE/Math/Stat 726 Spring 2025

Steepest descent in Hessian norm: Using the Hessian matrix ∇2 f (x) at x, one can define a
weighted norm

∥u∥∇2 f (x) :=
√

u⊤∇2 f (x)u

for each u ∈ Rd. Define
p∗ := argmax

p:∥p∥∇2 f (xk)
≤1

⟨−∇ f (xk), p⟩ .

It can be shown that the Newton step pk = −
(
∇2 f (xk)

)−1 ∇ f (xk) is in the direction of p∗, i.e.,
pk = tp∗ for some t ≥ 0. That is, pk is the steepest descent direction with respect to the norm
∥·∥∇2 f (xk)

. Compare this with the negative gradient direction used in GD:

− ∇ f (x)
∥∇ f (x)∥2

= argmax
p:∥p∥2≤1

⟨−∇ f (xk), p⟩ .

Below are illustrations of the steps taken by gradient descent (left) and Newton’s method
(right).1 In the right plot we also show the ellipsoids {x : ∥x − xk∥∇2 f (xk)

≤ 1}.

2.1 Basic assumptions

Here we assume that

• ∇2 f (xk) is invertible, so the iteration (BN) is well-defined;

• ∇2 f (xk) ≻ 0 is positive definite (p.d.), so pk = −
(
∇2 f (xk)

)−1 ∇ f (xk) is a descent direction
(see Lecture 6).

Later we will discuss how to handle situations where these assumptions are not satisfied.

3 Terminology for rates of convergence

To discuss the convergence rate of (BN) and other descent methods, we introduce some terminology.
Let {xk} be a sequence in Rd that converges to some x∗ ∈ Rd. We say that the convergence is

1The plots are taken from Convex Optimization by Boyd and Vandenberghe.
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1. Q-linear (or simply linear), if there exists r ∈ (0, 1) such that

∥xk+1 − x∗∥2 ≤ r ∥xk − x∗∥2 , ∀k sufficient large.

For example, the sequence xk = 0.7k converges to 0 linearly (with r = 0.7). We previously
showed that when f is m-strongly convex and L-smooth, GD converges Q-linearly with
r ≈ 1 − m

L . Roughly speaking, linear convergence means that an ϵ error can be achieves in
log 1

ϵ iterations.

2. Q-quadratic, if there exists a constant M > 0 such that

∥xk+1 − x∗∥2 ≤ M ∥xk − x∗∥2
2 , ∀k sufficient large.

Note the square on the RHS. For example, the sequence xk = 0.7(2
k) converges to 0 quadrati-

cally (with M = 1). Roughly speaking, quadratic convergence means that an ϵ error can be
achieved in log log 1

ϵ iterations. Put differently, the number of correct digits doubles at each
iteration. Quadratic convergence is much faster than linear convergence. (A picture)

3. Q-superlinear, if for any constant r > 0, there exists Kr < ∞ such that

∥xk+1 − x∗∥2 ≤ r ∥xk − x∗∥2 , ∀k ≥ Kr.

This means that {xk} converges faster than linear convergence with any r (but not necessarily
as fast as quadratic convergence).

4 Local quadratic convergence of Newton’s method

We say that the Hessian ∇2 f is Lipschitz-continuous with parameter LH < ∞ if∥∥∇2 f (x)−∇2 f (y)
∥∥

2 ≤ LH ∥x − y∥2 , ∀x, y, (1)

where on the left hand side we use the matrix operator norm (i.e., largest singular value). Recall
that the condition

∇ f (x∗) = 0, ∇2 f (x∗) ⪰ mI ≻ 0 (2)

is a (2nd-order) sufficient condition for x∗ being a local minimizer of f .
The basic Newton’s method converges quadratically in a neighborhood of such an x∗.

Theorem 1 (Similar to Theorem 3.5 in Nocedal-Wright). Suppose that f is twice continuously differen-
tiable, that its Hessian is LH-Lipschitz-continuous, and that x∗ is a point satisfying the 2nd-order sufficient
condition (2) for some m > 0. Let {xk} be given by (BN). If the initial point x0 satisfies ∥x0 − x∗∥2 ≤ m

2LH
,

then

(i) the sequence of iterates {xk} converges to x∗ quadratically: ∥xk+1 − x∗∥2 ≤ LH
m ∥xk − x∗∥2

2 , ∀k;

(ii) the sequence of gradient norms {∥∇ f (xk)∥2} converges to zero quadratically: ∥∇ f (xk+1)∥2 ≤
2LH
m2 ∥∇ f (xk)∥2

2 , ∀k.

Proof. As our induction hypothesis, assume that ∥xk − x∗∥2 ≤ m
2LH

.
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Proof of (i): Recall xk+1 = xk −
(
∇2 f (xk)

)−1 ∇ f (xk). Then

∥xk+1 − x∗∥2 =
∥∥∥xk − x∗ −

(
∇2 f (xk)

)−1 ∇ f (xk)
∥∥∥

2

=
∥∥∥(∇2 f (xk)

)−1 [∇2 f (xk) (xk − x∗)−∇ f (xk)
]∥∥∥

2

≤
∥∥∥(∇2 f (xk)

)−1
∥∥∥

2

∥∥∇2 f (xk) (xk − x∗)− (∇ f (xk)−∇ f (x∗))
∥∥

2 . b/c ∇ f (x∗) = 0

We know from Taylor’s Theorem that

∇ f (x∗)−∇ f (xk) =
∫ 1

0
∇2 f (xk + t(x∗ − xk)) (x∗ − xk)dt.

It follows that

∥xk+1 − x∗∥2

≤
∥∥∥(∇2 f (xk)

)−1
∥∥∥

2

∥∥∥∥∫ 1

0

[
∇2 f (xk)−∇2 f (xk + t(x∗ − xk))

]
(xk − x∗)dt

∥∥∥∥
2

≤
∥∥∥(∇2 f (xk)

)−1
∥∥∥

2

∫ 1

0

∥∥[∇2 f (xk)−∇2 f (xk + t(x∗ − xk))
]
(xk − x∗)

∥∥
2 dt Jensen

≤
∥∥∥(∇2 f (xk)

)−1
∥∥∥

2

∫ 1

0

∥∥∇2 f (xk)−∇2 f (xk + t(x∗ − xk))
∥∥

2︸ ︷︷ ︸
≤LH t∥xk−x∗∥2

∥xk − x∗∥2 dt Cauchy-Schwarz

≤ LH

2

∥∥∥(∇2 f (xk)
)−1

∥∥∥
2
∥xk − x∗∥2

2 .

On the other hand, we have

λmin
(
∇2 f (xk)

)
≥ λmin

(
∇2 f (x∗)

)
−

∥∥∇2 f (xk)−∇2 f (x∗)
∥∥

2 Weyl’s inequality (cf. HW1 Q9.2)

≥ λmin
(
∇2 f (x∗)

)
− LH ∥xk − x∗∥2 ∇2 f is LH-Lipschitz

≥ m
2

, ∇2 f (x∗) ⪰ mI, ∥xk − x∗∥2 ≤ m
2LH

hence ∥∥∥(∇2 f (xk)
)−1

∥∥∥
2
≤ 2

m
. (3)

Combining pieces, we obtain

∥xk+1 − x∗∥2 ≤ LH

2
· 2

m
· ∥xk − x∗∥2

2 =
LH

m
∥xk − x∗∥2

2 ,

In addition, thanks to the induction hypothesis ∥xk − x∗∥2 ≤ m
2LH

, we have ∥xk+1 − x∗∥2 ≤ LH
m ·

m
2LH

· ∥xk − x∗∥2 = 1
2 ∥xk − x∗∥2 , hence ∥xk − x∗∥2 converges to zero. We conclude that xk converges

to x∗ quadratically with M = LH
m , proving (i).

Also note that ∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 ≤ m
2LH

, so the induction step is completed.

Proof of (ii): From xk+1 = xk −
(
∇2 f (xk)

)−1 ∇ f (xk), we can write

∇ f (xk) = −∇2 f (xk) (xk+1 − xk) . (4)
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Hence

∥∇ f (xk+1)∥2 = ∥∇ f (xk+1)−∇ f (xk) +∇ f (xk)∥2

=

∥∥∥∥∫ 1

0

[
∇2 f (xk + t(xk+1 − xk))−∇2 f (xk)

]
(xk+1 − xk)dt

∥∥∥∥
2

Taylor and (4)

≤
∫ 1

0

∥∥∇2 f (xk + t(xk+1 − xk))−∇2 f (xk)
∥∥

2︸ ︷︷ ︸
≤LH t∥xk+1−xk∥2

∥xk+1 − xk∥2 dt Jensen’s, Cauchy-Schwarz

≤ LH

2
∥xk+1 − xk∥2

2

=
LH

2

∥∥∥(∇2 f (xk)
)−1 ∇ f (xk)

∥∥∥2

2

≤ LH

2
·
∥∥∥(∇2 f (xk)

)−1
∥∥∥2

2︸ ︷︷ ︸
≤ 4

m2 by (3)

· ∥∇ f (xk)∥2
2

≤ 2LH

m2 ∥∇ f (xk)∥2
2 .

We conclude that ∥∇ f (xk+1)∥2 converges quadratically with M′ = 2LH
m2 , proving (ii).

Remark 1. If f (x) = 1
2 x⊤Ax − b⊤x is a convex quadratic function, then the Hessian ∇2 f (x) = A is

independent of x and ∇2 f is LH-Lipschitz continuous on Rd with LH = 0. In this case, Theorem 1
implies that (BN) converges to a global minimizer x∗ in one iteration. Of course, one can prove this
result directly by noting that x1 = x0 − A−1(Ax0 − b) = A−1b = x∗.

5 Additional remarks

5.1 Affine invariance

A nice feature of Newton’s method is that it is invariant to linear or affine transformations (i.e.,
changes of coordinates), in the follow sense. Let {xk} be the iterates of (BN) applied to the function
f : Rd → R. Suppose T ∈ Rd×d is a nonsingular matrix. Define a new function g : Rd → R by
g(y) = f (Ty). If we apply (BN) to minimize g starting from y0 = T−1x0, then

yk = T−1xk, ∀k.

(Proof uses the chain rules ∇g(y) = T⊤∇ f (Ty) and ∇2g(y) = T⊤∇2 f (Ty)T; left as exercise.) That
is, the iterates are related by the same linear transformation. In contrast, gradient descent lacks this
property and is very sensitive to changes of coordinates (which strongly affect, e.g., the condition
number).

However, the convergence analysis of (BN) in Theorem 1 is not affine invariant: it depends very
much on the choice of coordinates. If we change the coordinate system, the values of LH, M and
M′ all change. There is an elegant way of obtaining affine invariant convergence results, which is
based on the notion of self-concordant functions; see Section 6.

5.2 Performance (optional)

Newton’s method converges very fast near x∗. If x0 is sufficiently close to x∗ such that the quadratic
convergence holds, usually at most six iterations suffice for achieving a very high accuracy.
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The main drawback of Netwon’s method is the high cost of computing and storing the d × d
Hessian matrix ∇2 f (x), especially when d is large. There are several ways for reducing the
computational cost, including various inexact Newton’s methods and quasi-Newton’s methods—
we will discuss some of them later.

5.3 Global convergence? (optional)

Theorem 1 is a local convergence result: it holds when x0 is sufficiently close to x∗. If x0 is far from
x∗, the basic Newton’s method (BN) may not converge to a stationary point. Additional adjustment
to (BN) is needed to ensure global convergence. We will discuss some of them in the next lecture.

6 Analysis of Newton’s method for self-concordant functions (optional)

The “traditional” analysis of Newton’s method in Theorem 1 applies to strongly convex functions
with Lipschitz Hessian, and the analysis is in terms of the ∥·∥2 norm. In this section, we present an
alternative convergence analysis, discovered by Nesterov and Nemirovski, where the role of strong
convexity and Lipschitz Hessian is replaced by the self-concordance property, and ∥·∥2 is replaced
by an appropriated weighted norm defined using the Hessian. This approach is simple and elegant,
leading to bounds that are affine-invariant and do not depend on any unknown constants (e.g., m
or LH).

Additional references:

• Section 9.6 in Convex Optimization by Boyd and Vandenberghe.

• Section 4.1 in Introductory Lectures on Convex Optimization by Yurii Nesterov.

• Section 5.3 in Bubeck’s monograph.

6.1 Self-concordance functions

Assume that f is three-times continuous differentiable. Note that for each x ∈ Rd, the 3rd derivative
∇3 f (x) ∈ Rd×d×d is a 3rd order tensor. It can be equivalently viewed as a function ∇3 f (x) :
Rd × Rd × Rd → R given by ∇3 f (x)[a, b, c] = ∑i,j,k

(
∇3 f (x)

)
ijk aibjck.2 The previous Lipschitz

Hessian assumption (1) is equivalent to

∇3 f (x)[h, h, h] ≤ LH ∥h∥3
2 , ∀x ∈ Rd, h ∈ Rd.

The idea of self-concordance is to replace ∥h∥2 on the RHS by the Hessian norm ∥h∥x ≡
∥h∥∇2 f (x) :=

√
h⊤∇2 f (x)h, which we introduced earlier.

Definition 1 (Self-concordance). A three-times continuously differentiable function is (standard)
self-concordant if

∇3 f (x)[h, h, h] ≤ 2 ∥h∥3
x , ∀x ∈ Rd, h ∈ Rd.

In d = 1 dimension, the above definition is equivalent to | f ′′′(x)| ≤ 2 ( f ′′(x))3/2 , ∀x. For
general d, f is self-concordant if it is self-concordant along every 1-D line, i.e., the 1-D function
f̃v(t) := f (x + tv) is self-concordant for every v ∈ Rd.

Examples of self-concordant functions:

2This is analogous to viewing the Hessian matrix ∇2 f (x) ∈ Rd×d as a bilinear function ∇2 f (x) : Rd × Rd → R given
by ∇2 f (x)[a, b] = ∑i,j

(
∇2 f (x)

)
ij aibj.
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• Linear and quadratic functions, for which ∇3 f (x) = 0.

• Negative log f (x) = − log x, and the log barrier function f (x) = −∑n
i=1 log(bi − a⊤i x).

• Log-determinant: f (X) = − log det X, defined for p.d. matrices X ≻ 0.

In a similar spirit, instead of measuring progress by ∥∇ f (x)∥2 (done in Theorem 1), we use the
dual Hessian norm.

Definition 2 (Newton decrement). Let f be a strictly convex self-concordant function. The Newton
decrement at x is defined as

λ(x) := ∥∇ f (x)∥∗x =

√
∇ f (x)⊤ (∇2 f (x))−1 ∇ f (x),

where ∥·∥∗x denotes the dual norm of the Hessian norm ∥·∥x.

Let x∗ be a minimizer of f . When f is self-concordant, the Newton decrement controls the
distance to x∗ and the optimality gap. In particular, for all x with λ(x) ≤ 0.68, we have

∥x − x∗∥x ≤ λ(x)
1 − λ(x)

,

f (x)− f (x∗) ≤ λ(x)2.

These are analogs of the following inequalities for m-strongly convex functions f :

∥x − x∗∥2 ≤ 1
m

∥∇ f (x)∥2 ,

f (x)− f (x∗) ≤ 1
2m

∥∇ f (x)∥2
2 .

6.2 Convergence analysis

Consider the basic Newton’s method (BN), i.e., xk+1 = xk −
[
∇2 f (xk)

]−1 ∇ f (xk), applied to self-
concordant functions. We have the following beautiful quadratic convergence result.

Theorem 2. Let f be a self-concordant strictly convex function. If x0 satisfies λ(x0) ≤ 1
4 , then

λ(xk+1) ≤ 2λ(xk)
2, ∀k ≥ 0.

This theorem is an analog of Theorem 1. Notably, it does not depend on any unknown parame-
ters of the function f .

To prove Theorem 2, we derive some basic properties of self-concordance. First consider a
one-dimensional strictly convex function f̃ : R → R, for which self-concordance means

∣∣ f̃ ′′′(t)
∣∣ ≤

2
(

f̃ ′′(t)
)3/2

, ∀t ∈ R. This is in turn equivalent to∣∣∣∣ d
dt

(
f̃ ′′(t)−1/2

)∣∣∣∣ ≤ 1, ∀t ∈ R.

Integrating the above inequality from 0 to t gives

−t ≤ f̃ ′′(t)−1/2 − f̃ ′′(0)−1/2 ≤ t, ∀t ≥ 0,
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from which we can obtain

f̃ ′′(0)(
1 + t f̃ ′′(0)1/2

)2 ≤ f̃ ′′(t) ≤ f̃ ′′(0)(
1 − t f̃ ′′(0)1/2

)2 , ∀0 ≤ t < f̃ ′′(0)−1/2. (5)

Now consider a d-dimensional self-concordant strictly convex function f . With some work, the
above inequality (5) can be generalized to this f :

(1 − t ∥v∥x)
2∇ f 2(x) ⪯ ∇2 f (x + tv) ⪯ 1

(1 − t ∥v∥x)
2∇ f 2(x), ∀0 ≤ t <

1
∥v∥x

, ∀v ∈ Rd. (6)

Proof of Theorem 2. Fix an arbitrary x ∈ Rd, and set v = −
(
∇2 f (x)

)−1 ∇ f (x). Then x+ = x + v is
the output after a Newton step from x, and ∥v∥x = λ(x). When λ(x) ≤ 1

4 , we can apply the lower
bound in (6) to obtain

∇2 f (x+) ⪰ (1 − λ(x))2 ∇2 f (x) =⇒
[
∇2 f (x+)

]−1 ⪯ 1

(1 − λ(x))2

[
∇2 f (x)

]−1
.

It follows that

λ(x+) =
√
∇ f (x+)⊤ [∇2 f (x+)]−1 ∇ f (x+)

≤

√√√√∇ f (x+)⊤
[∇2 f (x)]−1

(1 − λ(x))2∇ f (x+) =
1

1 − λ(x)
∥∥∇ f (x+)

∥∥∗
x . (7)

On the other hand, by definition of x+ = x + v and Taylor’s theorem, we have the expression

∇ f (x+) = ∇ f (x+)−∇ f (x)−∇2 f (x)(x+ − x)

=
〈 ∫ 1

0

[
∇2 f (x + tv)−∇2 f (x)

]
dt︸ ︷︷ ︸

G

, v
〉
= Gv

Hence it holds that∥∥∇ f (x+)
∥∥∗2

x

= v⊤G
[
∇2 f (x)

]−1
Gv

=
([

∇2 f (x)
]1/2

v
)⊤

·
[
∇2 f (x)

]−1/2
G
[
∇2 f (x)

]−1/2︸ ︷︷ ︸
H

·
[
∇2 f (x)

]−1/2
G
[
∇2 f (x)

]−1/2︸ ︷︷ ︸
H

·
[
∇2 f (x)

]1/2
v

≤ ∥H∥2
2 · ∥v∥2

x = ∥H∥2
2 · λ(x)2.

By integrating the bound (6), we have(
−λ(x) +

1
3

λ(x)2
)
∇2 f (x) ⪯ G ⪯ λ(x)

1 − λ(x)
∇2 f (x),

hence ∥H∥2 ≤ max
{

λ(x)
1−λ(x) , λ(x)− 1

3 λ(x)2
}
= λ(x)

1−λ(x) . It follows that

∥∥∇ f (x+)
∥∥∗2

x ≤ λ(x)2

(1 − λ(x))2 λ(x)2. (8)

8
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Combining (7) and (8) gives

λ(x+) ≤ 1
1 − λ(x)

· λ(x)2

1 − λ(x)
≤ 4λ(x)2 when λ(x) ≤ 1

4
.

Applying this bound to x = xk and using induction on k, we prove Theorem 2.
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