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Lecture 1–2: Optimization Background

Yudong Chen

1 Introduction

Our standard optimization problem
min
x∈X

f (x) (P)

• x: a vector, optimization/decision variable

• X : feasible set

• f (x) objective function, real-valued

• maxx f (x) = −minx {− f (x)}

The (optimal) value of (P):
val(P) = inf

x∈X
f (x).

To fully specify (P), we need to specify

• vector space, feasible set, objective function;

• what it means to solve (P).

1.1 Can we even hope to solve an arbitrary optimization problem?

Example 1. Suppose we want to find positive integers x, y, z satisfying

x3 + y3 = z3.

Can be formulated as a (continuous) optimization problem (PF):

min
x,y,z,n

(xn + yn − zn)2

s.t. x ≥ 1, y ≥ 1, z ≥ 1, n ≥ 3

sin2(πn) + sin2(πx) + sin2(πy) + sin2(πz) = 0.

(PF)

If we could certify whether val(PF) ̸= 0, we would have found a proof for Fermat’s Last theorem
(1637):

For any n ≥ 3, xn + yn = zn has no solutions over positive integers.

Proved by Andrew Wiles in 1994, a major mathematical breakthrough.
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Example 2. In unconstrained optimization, there may exist many local minima like in the following
picture. It is in general hard to find the global minima.

Figure 1: Left: an example of nonconvex function. Right: loss surfaces of ResNet-56 without skip
connections (https://arxiv.org/pdf/1712.09913.pdf).

Therefore, we cannot hope for solving an arbitrary optimization problem.
We need some structure.

2 Specifying the optimization problem

2.1 Vector space

(Rd, ∥·∥): normed vector space, “primal space”.
This is where the optimization variable and the feasible set live.

• The variable x is a (column) vector in Rd.

x =


x1
x2
...

xd

 .

• The norm tells us how to measure distances in Rd.

Most often, we will use the Euclidean norm ∥x∥ = ∥x∥2 =
(

∑d
i=1 x2

i

)1/2
.

We sometimes also consider ℓp norm ∥x∥p =
(

∑d
i=1 |xi|p

)1/p
for p ≥ 1.

• ∥x∥1 = ∑i |xi|,

• ∥x∥∞ = max1≤i≤d |xi|.
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(Try to plot the unit balls of ℓ2, ℓ1, ℓ∞ norms.)
We will use ⟨·, ·⟩ to denote the standard inner product

⟨x, y⟩ = x⊤y =
d

∑
i=1

xiyi.

When we work with
(

Rd, ∥·∥p

)
, view ⟨y, x⟩ as the value of a linear function y at x. So, if we

are measuring the length of x using the ∥·∥p, we should measure the length of y using ∥·∥q ,where
1
p +

1
q = 1.

Definition 1 (Dual norm). The dual norm of ∥·∥ is given by

∥z∥∗ := sup
∥x∥≤1

⟨z, x⟩ .

From the definition we immediately have the

Proposition 1 (Holder’s Inequality). For all z, y ∈ Rd:

|⟨z, x⟩| ≤ ∥z∥∗ · ∥x∥ .

Proof. Fix any two vectors x, z. Assume x ̸= 0, z ̸= 0; otherwise the inequality trivially holds.
Define x̂ = x

∥x∥ . Then

∥z∥∗ ≥ ⟨z, x̂⟩ = ⟨z, x⟩
∥x∥

and hence ⟨z, x⟩ ≤ ∥z∥∗ · ∥x∥. Applying same argument with x replaced by −x proves − ⟨z, x⟩ ≤
∥z∥∗ · ∥x∥.

Example 3. ∥·∥p and ∥·∥q are duals when 1
p +

1
q = 1. In particular, ∥·∥2 is its own dual; ∥·∥1 and

∥·∥∞ are dual to each other.

In Rd, all ℓp norms are equivalent. In particular,

∀x ∈ Rd, p ≥ 1, r > p : ∥x∥r ≤ ∥x∥p ≤ d
1
p−

1
r ∥x∥r .

However, choice of norm affects how algorithm performance depends on dimension d.

2.2 Feasible set

The feasible set
X ⊆ Rd

specifies what solution points we are allowed to output.
If X = Rd, we say that (P) is unconstrained. Otherwise we say that (P) is constrained.
X can be specified in multiple ways:

• as an abstract geometric body (a ball, a box, a polyhedron, a convex set)

• via functional constraints:

gi(x) ≤ 0, i = 1, 2, . . . , m,
hi(x) = 0, i = 1, . . . , p

Note that fi(x) ≥ C is equivalent to taking gi(x) = C − fi(x).
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Example 4.

X = B2(0, 1) = unit Euclidean ball

X =

{
x ∈ Rd :

d

∑
i=1

x2
i ≤ 1

}
.

In this class, we will always assume that X is closed.

Heine-Borel Theorem: X ⊆ Rd is closed and bounded if and only if it is compact (if X ⊂ ⋃
α∈A Uα

for some family of open sets {Uα} ,then there there exists a finite subfamily {Uαi}
n
i=1 such that

X ⊆ ⋃
1≤i≤n Uαi .)

Weierstrass Extreme Value Theorem: If X is compact and f is a function that is defined and
continuous on X , then f attains its extreme values on X .

What if X is not bounded? Consider f (x) = ex. Then infx∈R f (x) = 0, but not attained.
When we work with unconstrained problems, we will normally assume that f is bounded from

below.

Convex sets: Except for some special cases, we often assume that the feasible set X is convex (but
we will consider both convex and nonconvex objective functions f ).

Definition 2 (Convex set). A set X ⊆ Rd is convex if

∀x, y ∈ X , ∀α ∈ (0, 1) : (1 − α)x + αy ∈ X

Try to draw a picture.

We cannot hope to deal with arbitrary nonconvex constraints. E.g., xi(1 − xi) = 0 ⇐⇒ xi ∈
{0, 1}, integer programs.

2.3 Objective function

This represents the “cost” or “loss”, which we want to minimize.
Extended real valued functions:

f : D → R ∪ {−∞, ∞} ≡ R̄.

Here f is defined on D ⊆ Rd. Can extend the definition of f to all of Rd by assigning the value +∞
at each point x ∈ Rd \ D.

Effective domain:
dom( f ) =

{
x ∈ Rd : f (x) < ∞

}
In the sequel, domain means effective domain.

“Linear and nonlinear optimization” ≈ “continuous optimization” (as contrast to discrete/combinatorial
optimization)
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2.3.1 Lower semicontinuous functions

We mostly assume f to be continuous. This can be relaxed slightly as follows.

Definition 3. A function f : Rd → R̄ is said to be lower semicontinuous (l.s.c) at x0 ∈ Rd if

f (x0) ≤ lim inf
x→x0

f (x).

We say that f is l.s.c. on Rd if it is l.s.c. at every point x ∈ Rd.

This definition is mainly useful for allowing indicator functions.

Example 5. Verify yourself: The indicator function of a closed set X , defined as

IX (x) =

{
0, x ∈ X ,
∞, x /∈ X ,

is l.s.c. Using IX we can write

min
x∈X

f (x) ≡ min
x∈Rd

{ f (x) + IX (x)} ,

thereby unifying constrained and unconstrained optimization.

2.3.2 Lipschitz-continuous and smooth functions

Unless we are abstracting away constraints like in Example 5, the least we will assume about f is
that it is continuous.

Sometimes we consider stronger assumptions of f .

Definition 4. A function f : Rd → R̄ is said to be

1. Lipschitz-continuous on X ⊆ Rd (w.r.t. the norm ∥·∥) if there exists M < ∞ such that

∀x, y ∈ X : | f (x)− f (y)| ≤ M ∥x − y∥ .

2. Smooth on X ⊆ Rd (w.r.t. the norm ∥·∥) if f ’s gradient is Lipschitz-continuous, i.e., there
exists L < ∞ such that1

∀x, y ∈ X : ∥∇ f (x)−∇ f (y)∥∗ ≤ L ∥x − y∥ .

(Gradient: ∇ f (x) =


∂ f
∂x1
...

∂ f
∂xd

 .)

1This definition can be viewed a quantitative version of C1-smoothness.
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• Picture:

In Rd, Lipschitz-continuity in some norm implies the same for every other norm, but M may differ.

Example 6. f (x) = 1
2 ∥x∥2

2 is 1-smooth on R2 w.r.t. ∥·∥2. The log-sum-exp (or softmax) function

f (x) = log
(

∑d
i=1 exp(xi)

)
is 1-smooth on Rd w.r.t. ∥·∥∞.

Example 7. Function that is continuously differentiable on its domain but not smooth in the above
sense:

f (x) =
1
x

dom( f ) = R++

2.3.3 Convex functions

Definition 5. f : Rd → R̄ is convex if ∀x, y ∈ Rd, ∀α ∈ (0, 1) :

f ((1 − α)x + αy) ≤ (1 − α) f (x) + α f (y).

A picture.

Lemma 1. f : Rd → R is convex if and only its epigraph

epi( f ) :=
{
(x, a) : x ∈ Rd, a ∈ R, f (x) ≤ a

}
⊆ Rd+1

is convex.

Proof. Follows from definitions. Left as exercise.

Definition 6. We say that a function f : Rd → R̄ is proper if ∃x ∈ Rd s.t. f (x) ∈ R.

Lemma 2. If f : Rd → R̄ is proper and convex, then dom( f ) is convex.
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