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Lecture 22: Quasi-Newton: The BFGS and SR1 Methods

Yudong Chen

1 The BFGS method

Closely related to DFP is the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method, which is arguably
the most popular quasi-Newton method.

The high level idea of BFGS is similar to DFP, except that we switch the roles of Bk and Hk:

• works with a secant equation for Hk+1 instead of Bk+1;

• imposes a least change condition on Hk+1 instead of Bk+1.

In particular, recall the DFP secant equation:

DFP: yk = Bk+1sk. (1)

Working with Hk+1 = B−1
k+1 instead, BFGS considers the following secant equation:

BFGS: Hk+1yk = sk. (2)

To find Hk+1, we solve the least-change problem

min
H

∥H − Hk∥W

s.t.H = H⊤

Hyk = sk,

(3)

where ∥·∥W is the weighted Frobenius norm with weight matrix W = Ḡk =
∫ 1

0 ∇2 f (xk + tsk)dt.
The solution Hk+1 and its inverse Bk+1 are given in closed form by

(BFGS)

Hk+1 =

(
I −

sky⊤k
s⊤k yk

)
Hk

(
I −

yks⊤k
s⊤k yk

)
+

sks⊤k
s⊤k yk

,

Bk+1 = Bk −
Bksks⊤k Bk

s⊤k Bksk︸ ︷︷ ︸
rank-1

+
yky⊤k
y⊤k sk︸ ︷︷ ︸
rank-1

.
(4)

Similar to DFP, BFGS involves rank-2 updates and maintains positive definiteness of Hk, Bk
(proof left as exercise):

Fact 1. If Bk and Hk are positive definite and y⊤k sk > 0, then Bk+1 and Hk+1 computed using (4) are also
positive definite.

DFP and BFGS are duals of each other. One can be obtained from the other using the inter-
changes below:s

DFP Bk+1 sk yk
BFGS Hk+1 yk sk
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1.1 Implementation and performance

A direct implementation of BFGS stores the d × d matrix Hk explicitly. An alternative: store σ0 for
H0 = σ0 I and the pairs (s0, y0), (s1, y1), . . . , (sk, yk), so Hk+1 is stored implicitly. To form the search
direction −Hk∇ f (xk) from this implicit representation, it takes O(d) operations for each step, so
O(dk) operations in total, and storage of O(dk). For k ≤ d/5, this is better than explicit storage
which has cost O(d2).

It is observed that BFGS tends to outperform DFP, as BFGS can more effectively recover from a
bad Hessian approximation Bk.

Some numerical results on f (x) = 100(x2 − x2
1)

2 + (1 − x1)
2 (from Nocedal-Wright). To achieve

∥∇ f (xk)∥ ≤ 10−5, the steepest descent (i.e., GD) method required 5264 iterations, BFGS required
34, and Newton required 21. The table shows ∥xk − x∗∥ for the last few iterations.

1.2 Convergence guarantees for BFGS

We consider the iteration xk+1 = xk − αkB−1
k ∇ f (xk), where Bk is updated according to BFGS (4),

and αk satisfies the Weak Wolfe Conditions with c1 ≤ 1
2 . Moreover, we will assume that the line

search procedure will always try αk = 1 first and accept it when it satisfies the Wolfe Conditions.
We have global convergence guarantees for convex functions.

Theorem 1 (Global convergence; Theorem 6.5 in Nocedal-Wright). Suppose that

• f : Rd → R is twice continuously differentiable, the sublevel set L :=
{

x ∈ Rd | f (x) ≤ f (x0)
}

is
convex, and

∀x ∈ L : mI ≼ ∇2 f (x) ≼ MI

for some 0 < m ≤ M < ∞. (Note that f has a unique minimizer x∗ in L.)

• The initial B0 is symmetric p.d.

Then {xk} converges to the minimizer x∗.

Using Theorem 1, we can in fact show that the convergence is fast enough that
∞

∑
k=1

∥xk − x∗∥ < ∞. (5)

We have local superlinear convergence guarantees for general (possibly nonconvex) functions.

Theorem 2 (Local superlinear convergence; Theorem 6.6 in Nocedal-Wright). Let f : Rd → R be
twice continuously differentiable. Suppose that the iterates of BFGS converge to a local minimizer x∗ and
satisfy (5), and the Hessian of f is positive definite and L-Lipschitz around x∗, i.e.,∥∥∇2 f (x)−∇2 f (x∗)

∥∥ ≤ L ∥x − x∗∥ , ∀x ∈ Nx∗ .

Then {xk}
k→∞−→ x∗ at a superlinear rate.
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The proof of Theorem 2 ends by showing that

lim
k→∞

∥∥(Bk −∇2 f (xk)
)

sk
∥∥

2
∥sk∥2

= 0.

In this case, Theorem 2 from Lecture 21 applies and guarantees superlinear convergence.

2 The SR1 (symmetric rank-1 update) method

Consider the rank-1 update

Bk+1 = Bk + σkvkv⊤k ,

where σk ∈ {−1,+1} and vk ∈ Rd. We choose σk, Bk so that Bk+1 satisfies the secant equation

Bk+1sk = yk, (6)

where sk := xk+1 − xk, yk := ∇ f (xk+1)−∇ f (xk). The secant equation is equivalent to

yk − Bksk = σk(v⊤k sk)︸ ︷︷ ︸
∈R

vk. (7)

Assume v⊤k sk ̸= 0. Then vk is parallel to yk − Bksk, i.e., vk = δ(yk − Bksk) for some δ ∈ R. Substitut-
ing back, we get

yk − Bksk = σkδ2s⊤k (yk − Bksk)︸ ︷︷ ︸
∈R

(yk − Bksk).

For this equation to hold, we must have

σk = sign
(

s⊤k (yk − Bksk)
)

, δ = ± 1√∣∣s⊤k (yk − Bksk)
∣∣

assuming that
∣∣s⊤k (yk − Bksk)

∣∣ ̸= 0.
The above choice of σk and δ are the only possible way of satisfying the secant equation with a

symmetric rank-1 update. This gives the SR1 update rule for Bk+1:

(SR1) Bk+1 = Bk +
(yk − Bksk) (yk − Bksk)

⊤

s⊤k (yk − Bksk)
.

By Sherman-Morrison formula, we also have the update rule for Hk+1 = B−1
k+1:

(SR1) Hk+1 = Hk +
(sk − Hkyk) (sk − Hkyk)

⊤

y⊤k (sk − Hkyk)
.

The SR1 update rule is very simple (in particular, apparently simpler than DFP/BFGS). However,
even if Bk is p.d., Bk+1 may not be. The same holds for Hk and Hk+1. Therefore, the Bk matrix
generated by SR1 is in general not used with the update xk+1 = xk − αkB−1

k ∇ f (xk), as it need not
give a descent direction. However, this Bk is quite useful in Trust-Region methods, which we will
discuss later. The lack of positive definiteness may actually make Bk a better approximation to the
true Hessian ∇2 f (xk) (which may be indefinite), compared to Bk generated by DFP/BFGS.
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Another major issue of SR1: the numbers s⊤k (yk − Bksk) and y⊤k (sk − Hkyk), which appear in the
denominators of the update rules, may be zero (or very small). In this case, there is no symmetric
rank-1 update that satisfies the secant equation (or the secant equation is ill-conditioned). This may
happen even when f is a convex quadratic.

Let us zoom in the above issue. Based on our derivation of SR1, there are three cases:

1. If s⊤k (yk − Bksk) ̸= 0, then Bk+1 is uniquely defined by the SR1 update rule above.

2. If yk = Bksk, then by (7) the secant equation is satisfied with Bk+1 = Bk.

3. If yk ̸= Bksk and s⊤k (yk − Bksk) = 0, then there is no symmetric rank-1 update that satisfies
the secant equation.

Due to the case 3, SR1 is numerically unstable. To have all the required properties of Bk and Hk,
rank-2 updates (as in DFP/BFGS) are necessary.

Nevertheless, SR1 is still used in practice, because:

1. there exists a simple safeguard that prevents numerical instability (see below);

2. there exist some setups (e.g., constrained optimization) where it is not possible to impose the
curvature condition y⊤k sk > 0, which is necessary for DFP/BFGS, but not needed in SR1.

Safeguard for SR1: Apply SR1 update only if∣∣∣s⊤k (yk − Bksk)
∣∣∣ ≥ r ∥sk∥ ∥yk − Bksk∥ , (8)

where r is some small constant (e.g., 10−8). Otherwise, set Bk+1 = Bk (i.e., skip the update). Note
that the skipping happens when Bk is already a good approximation of the true Hessian along the
direction sk.

Hessian approximation properties of SR1:

• (NW Theorem 6.1) For strongly convex quadratic function f (x) = 1
2 x⊤Ax+ b⊤x, if s⊤k (yk − Bksk) ̸=

0 for all k, then SR1 iterates converges to the minimizer x∗ in at most d step. Moreover, if its
search directions pk = −B−1

k ∇ f (xk) are linearly independent, then Hd = A−1.

• (NW Theorem 6.2) For general f with Lipschitz continuous Hessian, if xk → x∗, (8) holds for
all k, and the steps {sk} are uniformly linearly independent, then Bk → ∇2 f (x∗).

(Optional) Go through the proof of Theorem 6.1.
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