
UW-Madison CS/ISyE/Math/Stat 726 Spring 2025

Lecture 23: Limited-Memory BFGS (L-BFGS)

Yudong Chen

1 Basic ideas

Newton and quasi-Newton methods enjoy fast convergence (i.e., a small number of iterations).
However, for large-scale problems each iteration may be too costly.

For example, recall the quasi-Newton method xk+1 = xk − αk Hk∇ f (xk) with BFGS update:

Hk = V⊤k−1Hk−1Vk−1 + ρk−1sk−1s⊤k−1, (1)

where

ρk =
1

s⊤k yk
,

Vk = I − ρkyks⊤k ,
sk = xk+1 − xk, yk = ∇ f (xk+1)−∇ f (xk),

and the stepsize αk satisfies the weak Wolfe conditions (WWC). The matrices Hk ∈ Rd×d constructed
by BFGS are often dense, even when the true Hessian is sparse. In general, BFGS requires Θ(d2)
computation per iteration and Θ(d2) memory. For large d, Θ(d2) may be too much.

Idea of L-BFGS: Instead of storing the full matrix Hk (which is an approximation of∇2 f (xk)
−1),

construct and represent Hk implicitly using a small number of vectors {si, yi} from the last several
iterations.

Intuition: We do not expect the current Hessian to depend too much on the “old” vectors si, yi
(i.e., old iterates xi and their gradients.)

Tradeoff: We can reduce memory and computation to O(d) if we only store vectors from the
last O(1) iterations. But we may lose local superlinear convergence—we can only guarantee linear
convergence in general.

1



UW-Madison CS/ISyE/Math/Stat 726 Spring 2025

2 Limited-memory BFGS (L-BFGS)

One may expand the BFGS update (1) for m steps as :

BFGS: Hk =V⊤k−1Hk−1Vk−1 + ρk−1sk−1s⊤k−1

=V⊤k−1V⊤k−2Hk−2Vk−2Vk−1 + ρk−2Vk−2sk−2s⊤k−2Vk−1 + ρk−1sk−1s⊤k−1

...

=
(

V⊤k−1V⊤k−2 · · ·V⊤k−m

)
Hk−m (Vk−mVk−m+1 · · ·Vk−1)

+ ρk−m

(
V⊤k−1 · · ·V⊤k−m+1

)
sk−ms⊤k−m (Vk−m+1 · · ·Vk−1)

+ ρk−m+1

(
V⊤k−1 · · ·V⊤k−m+2

)
sk−m+1s⊤k−m+1 (Vk−m+2 · · ·Vk−1)

+ · · ·
+ ρk−2V⊤k−1sk−2s⊤k−2Vk−1

+ ρk−1sk−1s⊤k−1.

For exact computation of BFGS, we need to take m = k and start with H0, in which case the above
RHS involves the sum of k + 1 terms.

In L-BFGS, we use a small m and start from Hk−m. We then replace Hk−m (a dense d× d matrix)
with some user-specified sparse matrix H0

k , e.g., a diagonal matrix. Thus, Hk can be constructed
using the most recent m≪ d pairs {si, yi}k−1

i=k−m. That is,

L-BFGS: Hk =
(

V⊤k−1V⊤k−2 · · ·V⊤k−m

)
H0

k (Vk−mVk−m+1 · · ·Vk−1)

+ ρk−m

(
V⊤k−1 · · ·V⊤k−m+1

)
sk−ms⊤k−m (Vk−m+1 · · ·Vk−1)

+ ρk−m+1

(
V⊤k−1 · · ·V⊤k−m+2

)
sk−m+1s⊤k−m+1 (Vk−m+2 · · ·Vk−1)

+ · · ·
+ ρk−1sk−1s⊤k−1.

In fact, we only need the d-dimensional vector Hk∇ f (xk) to compute the update xk+1 =
xk − αk Hk∇ f (xk). Therefore, we do not even need to compute or store the matrix Hk explicitly.
Instead, we only store the vectors {si, yi}k−1

i=k−m, from which Hk∇ f (xk) can be computed using only
vector-vector multiplications, thanks to identities like (aa⊤ + bb⊤)g = a(a⊤g) + b(b⊤g).

This leads to a two-loop recursion implementation for computing Hk∇ f (xk), stated in Algo-
rithm 1.

2



UW-Madison CS/ISyE/Math/Stat 726 Spring 2025

Algorithm 1 L-BFGS two-loop recursion
set q = ∇ f (xk). We want to compute Hk · ∇ f (xk)
for i = k− 1, k− 2, . . . , k−m do:

αi ← ρis⊤i q

q← q− αiyi // RHS= q− ρis⊤i qyi =
(

I − ρiyis⊤i
)

︸ ︷︷ ︸
Vi

q

r = H0
k q

for i = k−m to k− 1:
β← ρiy⊤i r

r ← r + si(αi − β) // RHS = r + siαi − ρiy⊤i rsi =
(

I − ρisiy⊤i
)

︸ ︷︷ ︸
V⊤i

r + siαi

return r // which equals Hk∇ f (xk)

(Exercise) The total number of multiplications is at most 4md + nnz(H0
k ) = O (md) .

In practice:

• We often take m to be a small constant independent of d and k, e.g., 3 ≤ m ≤ 20.

• A popular choice for H0
k is H0

k = γk I, where γk =
s⊤k−1yk−1

y⊤k−1yk−1
. This choice appears to be quite

effective in practice. (Optional) One can show that 1
γk

is an approximation of z⊤k ∇2 f (xk)zk

∥zk∥2 ,

which is the size of the true Hessian along the direction zk ≈
(
∇2 f (xk)

)1/2 sk; see Section 6.1
in Nocedal-Wright.

The complete L-BFGS algorithm is given in Algorithm 2. As discussed in Lecture 21, it is important
that αk satisfies both the sufficient decrease and curvature conditions in WWC.

Algorithm 2 L-BFGS

input: x0 ∈ Rd (initial point), m > 0 (memory budget), ϵ > 0 (convergence criterion)
k← 0
repeat:

• Choose H0
k

• pk ← −Hk∇ f (xk), where Hk∇ f (xk) is computed using Algorithm 1

• xk+1 ← xk + αk pk, where αk satisfies Wolfe Conditions

• if k > m:

– discard {sk−m, yk−m} from storage

• Compute and store sk ← xk+1 − xk and yk = ∇ f (xk+1)−∇ f (xk)

• k← k + 1

until ∥∇ f (xk)∥ ≤ ϵ

3



UW-Madison CS/ISyE/Math/Stat 726 Spring 2025

Some numerical results taken from Nocedal-Wright:

3 Relationship with nonlinear conjugate gradient methods

In Lecture 13 we discussed several ways of generalizing conjugate gradient (CG) to non-quadratic
functions. Such generalizations are known as Nonlienar CG, with examples including Dai-Yuan,
Fletcher-Rieves and Polak-Ribiere. In particular, Polak-Ribiere uses the update

xk+1 = xk + αk pk,
pk+1 = −∇ f (xk+1)− βk pk

βk =−
⟨∇ f (xk+1),∇ f (xk+1)−∇ f (xk)⟩

∥∇ f (xk)∥2
2

.

The Polak-Ribiere nonlinear CG method has a variant called Hestenes-Stiefel, which uses the
following search direction:

pk+1 = −∇ f (xk+1) +
∇ f (xk+1)

⊤yk

y⊤k pk
pk = −

(
I −

sky⊤k
y⊤k sk

)
︸ ︷︷ ︸

=:Ĥk+1

∇ f (xk+1), (2)

where we recall that yk = ∇ f (xk+1)−∇ f (xk) and sk = xk+1 − xk = αk pk
Below we show that the Hestenes-Stiefel CG update (2) is equivalent to an extreme form of

L-BFGS with m = 1. The matrix Ĥk+1 in (2) is neither symmetric nor p.d. One may modify it into a

4



UW-Madison CS/ISyE/Math/Stat 726 Spring 2025

symmetric p.d. matrix satisfying the secant equation as follows:

Hk+1 = Ĥk+1Ĥ⊤k+1 +
sks⊤k
y⊤k sk

=

(
I −

sky⊤k
y⊤k sk

)
I

(
I −

yks⊤k
y⊤k sk

)
+

sks⊤k
y⊤k sk

= BFGS update (1) applied to Hk = I

Therefore, using this Hk+1 in the search direction pk+1 = −Hk+1∇ f (xk+1) can be viewed as
“memoryless” BFGS, i.e., L-BFGS with m = 1 and H0

k = I.
Suppose we use memoryless BFGS with stepsize chosen by exact line search:

αk = argmin
α∈R

f (xk + αpk).

For each k , the stepsize αk satisfies

0 = ⟨∇ f (xk + αk pk), pk⟩ =
〈
∇ f (xk+1), α−1

k sk

〉
,

hence s⊤k ∇ f (xk+1) = 0. It follows that next memoryless BFGS direction is

pk+1 = −Hk+1∇ f (xk+1)

= −
[(

I −
sky⊤k
y⊤k sk

)(
I −

yks⊤k
y⊤k sk

)
+

sks⊤k
y⊤k sk

]
∇ f (xk+1)

= −∇ f (xk+1) +
y⊤k ∇ f (xk+1)

y⊤k sk
sk s⊤k ∇ f (xk+1) = 0

= −∇ f (xk+1) +
y⊤k ∇ f (xk+1)

y⊤k pk
pk, sk = αk pk

which is the same as Hestenes-Stiefel CG update (2).

5


	Basic ideas
	Limited-memory BFGS (L-BFGS)
	Relationship with nonlinear conjugate gradient methods

