UW-Madison CS/ISyE/Math/Stat 726 Spring 2025

Lecture 23: Limited-Memory BFGS (L-BFGS)

Yudong Chen

1 Basicideas

Newton and quasi-Newton methods enjoy fast convergence (i.e., a small number of iterations).
However, for large-scale problems each iteration may be too costly.
For example, recall the quasi-Newton method xj,1 = x; — axHxV f (x;) with BFGS update:

H, = VkalHqukq + Pkflskflsz—{rfy (1)

where

1
Ok = ——

= T
B T

Vie = I — 0ryiSy

Sk = Xgp1 — Xk, Yk = Vf(xx1) — V(xe),

and the stepsize «, satisfies the weak Wolfe conditions (WWC). The matrices Hy € R%*9 constructed
by BFGS are often dense, even when the true Hessian is sparse. In general, BEGS requires G)(dz)
computation per iteration and ®(d?) memory. For large d, ®(d?) may be too much.

Idea of L-BFGS: Instead of storing the full matrix Hy (which is an approximation of V2f(x)™h),
construct and represent Hy implicitly using a small number of vectors {s;, y;} from the last several
iterations.

Intuition: We do not expect the current Hessian to depend too much on the “old” vectors s;, y;
(i.e., old iterates x; and their gradients.)

Tradeoff: We can reduce memory and computation to O(d) if we only store vectors from the
last O(1) iterations. But we may lose local superlinear convergence—we can only guarantee linear
convergence in general.

UW-Madison CS/ISyE/Math/Stat 726 Spring 2025

2 Limited-memory BFGS (L-BFGS)

One may expand the BFGS update (1) for m steps as :

BEFGS: H; :Vk—ilHk_lvk_l + pk_lsk_lskil
=V 1V o HeaViaVie1 + pr—2 Vi-aSk—254_» V-1 + Pr—15k—15p 1

= (Vkilvktz e Vk—im> Hie—m ViemVieems -+ Vier)
+ Ok—m (thl o thmﬂ) Sk-mSt—m (Viems1 -+ Vi)

+ Ok—m+1 (VkT—l e VkT—m+2) Sk-m18t—m1 (Vemsz -+ Vio1)
+ Pk—2 Vil 18k—281 5 Vi1
+ pk,lsk,lslll.

For exact computation of BFGS, we need to take m = k and start with Hy, in which case the above

RHS involves the sum of k + 1 terms.
In L-BFGS, we use a small m and start from Hj_,,. We then replace Hy_,, (a dense d x d matrix)
with some user-specified sparse matrix HY, e.g., a diagonal matrix. Thus, Hy can be constructed

using the most recent m < d pairs {s;, yi}f;k{m. That is,

L-BFGS: Hy = (Vkilvkiz - Vkim) H? (Vi Vi -+ Vi)
+ Pk—m (thl E thmﬂ) Sk-mSt—m (Viema1 -+ V1)

+ Ok—m+1 (VkT—l T VkT—m-',-Z) Sk—m+15kT—m+1 (Veem2 -+ Vie1)

-
+ Pk—18k—15k—1-

In fact, we only need the d-dimensional vector H;V f(xx) to compute the update x;; =
Xy — 0 HyV f(xx). Therefore, we do not even need to compute or store the matrix Hy explicitly.
Instead, we only store the vectors {s;, yi}f:_;},m, from which H;V f(x) can be computed using only

vector-vector multiplications, thanks to identities like (aa" +bb")g =a(a'g) +b(b"g).

This leads to a two-loop recursion implementation for computing H,V f(xy), stated in Algo-
rithm 1.

UW-Madison CS/ISyE/Math/Stat 726 Spring 2025

Algorithm 1 L-BFGS two-loop recursion

set g = V f(x;). We want to compute Hy - V f(xy)
fori=k—1,k—2,...,k—mdo:

w; < pis; q
9 q— iy // RHS= g — pis] qyi = (1 - pwisi) g
—_———
v,

r=H}q
fori=k—-mtok—1:

B oyt

r<r+si(a;—B) // RHS = r+s;a; — piy/ rs; = (I — PiSiyiT) r+si;

~————
V’_T

return r // which equals HV f (xy)

(Exercise) The total number of multiplications is at most 4md 4+ nnz(H}) = O (md) .
In practice:

* We often take m to be a small constant independent of d and k, e.g., 3 < m < 20.

.
* A popular choice for HY is H) = I, where 7 = % This choice appears to be quite

k—17k=1
Tx72
effective in practice. (Optional) One can show that % is an approximation of %
k

7

which is the size of the true Hessian along the direction z; ~ (V2 f (xk)) 1/2 Sk; see Section 6.1
in Nocedal-Wright.

The complete L-BFGS algorithm is given in Algorithm 2. As discussed in Lecture 21, it is important
that ;. satisfies both the sufficient decrease and curvature conditions in WWC.

Algorithm 2 L-BFGS

input: xy € R? (initial point), m > 0 (memory budget), € > 0 (convergence criterion)
k<0
repeat:

¢ Choose H,?

pr < —HiV f(x;), where HiV f(xx) is computed using Algorithm 1

® X1 < Xi + agpr, where oy satisfies Wolfe Conditions

if k > m:
— discard {sx_, Yx—n } from storage

e Compute and store s; < X1 — Xg and yx = V f(x,11) — Vf(xx)

k< k+1
until |V f(xe)| <€

UW-Madison CS/ISyE/Math/Stat 726 Spring 2025

Some numerical results taken from Nocedal-Wright:

Table 7.1 presents results illustrating the behavior of Algorithm 7.5 for various levels
of memory m. It gives the number of function and gradient evaluations (nfg) and the total
CPU time. The test problems are taken from the CUTE collection [35], the number of
variables is indicated by 7, and the termination criterion ||V f;|| < 107 is used. The table
shows that the algorithm tends to be less robust when m is small. As the amount of storage
increases, the number of function evaluations tends to decrease; but since the cost of each
iteration increases with the amount of storage, the best CPU time is often obtained for small

values of m. Clearly, the optimal choice of m is problem dependent.

Table 7.1 Performance of Algorithm 7.5.

L-BEGS L-BFGS L-BFGS L-BFGS
Problem n m=3 m=>5 m=17 m =29
nfg time nfg time | nfg time | nfg time

DIXMAANL 1500 146 16.5 134 174 | 120 282 | 125 44.4
EIGENALS 110 821 215 569 15.7 | 363 16.2 | 168 12.5
FREUROTH 1000 | =999 — | =999 — 69 8.1 38 6.3
TRIDIA 1000 876 46.6 611 414 | 531 84.6 | 462 127.1

3 Relationship with nonlinear conjugate gradient methods

In Lecture 13 we discussed several ways of generalizing conjugate gradient (CG) to non-quadratic
functions. Such generalizations are known as Nonlienar CG, with examples including Dai-Yuan,
Fletcher-Rieves and Polak-Ribiere. In particular, Polak-Ribiere uses the update

Xk41 = Xk + &k Pk,

Per1 = =V f(Xes1) — Brpr

By = — (Vf(xx41), Vf(xes1) — V(1))
IV (013

The Polak-Ribiere nonlinear CG method has a variant called Hestenes-Stiefel, which uses the
following search direction:

YV (xkt1) Ty SkYy
= V() + L) Ve, (e) G y), 2
Pr+1 f(xXk41) e Pk e f(xk41))
:5Hk+1

where we recall that yy = V f(xx1) — Vf(xx) and sp = x50 — X = axpx
Below we show that the Hestenes-Stiefel CG update (2) is equivalent to an extreme form of
L-BFGS with m = 1. The matrix Hy 4 in (2) is neither symmetric nor p.d. One may modify it into a

UW-Madison CS/ISyE/Math/Stat 726 Spring 2025

symmetric p.d. matrix satisfying the secant equation as follows:

N AT SkSI;r
Hy1 = HepiH + ——
Yy Sk

—(1- S"TLkT 1{r- y’;i + 2% :
Yi Sk Yk Sk Yy Sk
= BFGS update (1) applied to Hy = I

Therefore, using this Hy,q in the search direction pyi1 = —Hy11Vf(xk+1) can be viewed as
“memoryless” BFGS, i.e., L-BFGS with m = 1 and HY = I.
Suppose we use memoryless BEGS with stepsize chosen by exact line search:

ap = argmin f(x; + apy).
a€R

For each k , the stepsize ay satisfies

0= (Vf(xx+axpr) pr) = <Vf(xk+1),zx,jlsk>)

hence s,j V f(xk+1) = 0. It follows that next memoryless BFGS direction is

Pir1 = —Hia Vi (Xe41)

S I S—r S S—r
Y Sk Yi Sk Yi Sk

IV f(x
= —Vf(xks1) + wsk sp Vf(xkp1) =0
Y Sk
IV f(x
= _vf(xk+1) + Y {—(k+1) Pks Sk = &kPk
Yi Pk

which is the same as Hestenes-Stiefel CG update (2).

	Basic ideas
	Limited-memory BFGS (L-BFGS)
	Relationship with nonlinear conjugate gradient methods

