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Lecture 6: Gradient descent and its analysis

Yudong Chen

1 Basic descent methods

Take the form
xk+1 = xk + αk pk, k = 0, 1, . . .

Definition 1. p ∈ Rd is a descent direction for f at x if

f (x + tp) < f (x)

for all sufficiently small t > 0.

Proposition 1. If f is continuously differentiable (in a neighborhood of x), then any p such that ⟨∇ f (x), p⟩ <
0 is a descent direction.

Proof. By Taylor’s theorem:

f (x + tp) = f (x) + t ⟨∇ f (x + γtp), p⟩

for some γ ∈ (0, 1). We know that ⟨∇ f (x), p⟩ < 0. As ∇ f is continuous, for all sufficiently small
t > 0,

⟨∇ f (x + γtp), p⟩ < 0,

hence f (x + tp) < f (x).

2 Gradient descent

What would be a good descent direction? Could try to move in the direction of −∇ f (x), since

− ∇ f (x)
∥∇ f (x)∥2

= arg max
∥p∥2=1

⟨−∇ f (x), p⟩ .

“Simplest” descent algorithm:

xk+1 = xk − αk∇ f (xk),

where αk is the step size. Ideally, choose αk small enough so that

f (xk+1) < f (xk)

when ∇ f (xk) ̸= 0.
Known as “gradient method”, “gradient descent”, “steepest descent” (w.r.t. the ℓ2 norm).
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3 Analysis of Gradient descent

Consider the gradient descent (GD) iteration with constant stepsize:

xk+1 = xk − α∇ f (xk), ∀k = 0, 1, . . .

Assumptions for this part:

(A1) f is L-smooth for L < ∞ (thus also continuously differentiable.)

(A2) X = Rd, i.e., the problem is unconstrained.

Note: we do not assume f is convex, until explicitly stated otherwise.

From properties of L-smooth functions (Lemma 1 in Lecture 4):

∀y : f (y) ≤ f (xk) + ⟨∇ f (xk), y− xk⟩+
L
2
∥y− xk∥2

2︸ ︷︷ ︸
RHS

.

Set
xk+1 = arg min

y∈Rd
{RHS} = xk −

1
L
∇ f (xk). (1)

Here, the argmin can be found by setting the gradient of RHS to zero: ∇ f (xk) + L(xk+1 − xk) = 0.
Moreover,

f (xk+1) ≤ f (xk)−
1

2L
∥∇ f (xk)∥2

2 .

More generally, we have

Lemma 1 (Descent Lemma). If xk+1 = xk − α∇ f (xk), α ∈ (0, 1
L ], then

f (xk+1) ≤ f (xk)−
α

2
∥∇ f (xk)∥2

2 .

Proof. Exercise.

Remark 1. Eq. (1) gives an alternative way of deriving GD: we minimize an upper bound of f ,
where the upper bound is constructed using the local information ∇ f (xk).

3.1 The case of general smooth functions

We only assume f is L-smooth; f is potentially non-convex.
Repeatedly using Descent Lemma 1, we have

f (xk+1) ≤ f (xk)−
α

2
∥∇ f (xk)∥2

2

≤ f (xk−1)−
α

2
∥∇ f (xk−1)∥2

2 −
α

2
∥∇ f (xk)∥2

2

...

≤ f (x0)−
α

2

k

∑
i=0
∥∇ f (xi)∥2

2 .
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Rearranging terms:
α

2

k

∑
i=0
∥∇ f (xi)∥2

2 ≤ f (x0)− f (xk+1).

Let’s assume f∗ := infx f (x) > −∞. We can bound the LHS and RHS above as

f (x0)− f (xk+1) ≤ f (x0)− f∗

and
α

2

k

∑
i=0
∥∇ f (xi)∥2

2 ≥
α

2
(k + 1) min

0≤i≤k
∥∇ f (xi)∥2

2 .

Combining last three equations:

min
0≤i≤k

∥∇ f (xi)∥2
2 ≤

2 ( f (x0)− f∗)
α(k + 1)

⇐⇒ min
0≤i≤k

∥∇ f (xi)∥2 ≤

√
2 ( f (x0)− f∗)

α(k + 1)
.

Equivalently, for any target error ϵ > 0, GD finds an ϵ-near stationary point in roughly C
ϵ2 iterations:

min
0≤i≤k

∥∇ f (xi)∥2 ≤ ϵ for k + 1 ≥ 2 ( f (x0)− f∗)
αϵ2.

.

Remark 2. While function value f (xk) is decreasing in k, the gradient ∇ f (xk) need not.

Remark 3. When ∇ f (x) = 0, x may be a local min or a saddle point. Without further assumption,
finding a stationary point is the best we can hope for (recall the hard case mentioned at the end of
Lecture 4). Under certain assumptions (which exclude the hard case), we can show that randomly
initialized GD usually converges to a local min.1 2

1“Gradient Descent Converges to Minimizers”, Jason Lee, Max Simchowitz, Michael Jordan, Benjamin Recht, 2016.
2Plot by Jelena Diakonikolas
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3.2 The convex case

How does convexity help? Let x∗ ∈ arg minx∈Rd f (x). (We assume the minimum is attained. The
minimizer may not be unique.) Convexity gives lower bounds on f∗ = f (x∗):

∀x : f (x∗) ≥ f (x) + ⟨∇ f (x), x∗ − x⟩ .

Goal is to bound the optimality gap f (xk+1)− f (x∗). We have

f (x∗) ≥ f (xk) + ⟨∇ f (xk), x∗ − xk⟩ by convexity

= f (xk) +
1
α
⟨xk − xk+1, x∗ − xk⟩

= f (xk) +
1

2α
∥xk+1 − x∗∥2

2 −
1

2α
∥xk − x∗∥2

2 −
1

2α
∥ xk − xk+1︸ ︷︷ ︸
−α∇ f (xk)

∥2
2

using the Law of Cosines, a generalization of (a− b)(c− a) =
1
2
(c− b)2 − 1

2
(a− b)2 − 1

2
(c− a)2

= f (xk)−
α

2
∥∇ f (xk)∥2

2 +
1

2α
∥xk+1 − x∗∥2

2 −
1

2α
∥xk − x∗∥2

2

≥ f (xk+1) +
1

2α
∥xk+1 − x∗∥2

2 −
1

2α
∥xk − x∗∥2

2 by descent lemma.

1) Distance to minimizer: We have

∥xk+1 − x∗∥2
2 − ∥xk − x∗∥2

2 ≤ 2α ( f (x∗)− f (xk+1))

≤ 0

with strict inequality whenever f (xk+1) ̸= f (x∗). So GD never moves further away from the set of
minimizers.

2) Bound on optimality gap: We have

f (xk+1)− f (x∗) ≤ 1
2α

(
∥xk − x∗∥2

2 − ∥xk+1 − x∗∥2
2

)
=⇒

K

∑
k=0

[ f (xk+1)− f (x∗)] ≤
K

∑
k=0

1
2α

(
∥xk − x∗∥2

2 − ∥xk+1 − x∗∥2
2

)
←− "telescoping sum"

≤ 1
2α

(
∥x0 − x∗∥2

2 − ∥xK+1 − x∗∥2
2

)
≤ 1

2α
∥x0 − x∗∥2

2 .

But f (x1) ≥ f (x2) ≥ · · · , so

K

∑
k=0

[ f (xk+1)− f (x∗)] ≥ (K + 1) [ f (xK+1)− f (x∗)] .

Combining,

f (xk+1)− f (x∗) ≤ ∥x0 − x∗∥2
2

2α(k + 1)
.

Equivalently, for each ϵ > 0, we have f (xk)− f (x∗) ≤ ϵ after at most

k =

⌈
∥x0 − x∗∥2

2
2αϵ

⌉
iterations.

Compare with the general case.
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Remark 4 (Telescoping Sum; optional). We just saw a pattern that will appear several times in the
proofs this semester. We summarize this argument below:

Lemma 2. Let {ak}k≥0 and {Dk}k≥0 be sequences of real numbers, with Dk non-negative. If

ak ≤ Dk − Dk+1 for all k,

then
min

0≤i≤k
ai ≤

D0

k + 1
for all k.

If in addition ak is non-increasing in k, then

ak ≤
D0

k + 1
for all k.

Proof. Observe that

(k + 1) · min
0≤i≤k

ai ≤
k

∑
i=0

ai ≤
k

∑
i=0

(Di − Di+1) = D0 − Dk+1 ≤ D0.

Moreover, when ai is non-increasing in i, we have min0≤i≤k ai ≥ ak.

Anecdote: Formalizing the proof of this lemma in the theorem prover Lean 4 was posted as a
challenge by my friend Damek Davis and later taken up by Terry Tao.

3.3 The strongly convex case

Assume f is m-strongly convex. For all k:

f (x∗) ≥ f (xk) +

〈
∇ f (xk)︸ ︷︷ ︸

1
α (xk−xk+1)

, x∗ − xk

〉
+

m
2
∥x∗ − xk∥2

2 by strong convexity

≥ f (xk+1) +
1

2α
∥xk+1 − x∗∥2

2 −
1

2α
∥xk − x∗∥2

2 +
m
2
∥x∗ − xk∥2

2 same argument as before

= f (xk+1) +
1

2α
∥xk+1 − x∗∥2

2 −
(

1
2α
− m

2

)
∥xk − x∗∥2

2 .

Rearranging:
1

2α
∥xk+1 − x∗∥2

2 ≤
(

1
2α
− m

2

)
∥xk − x∗∥2

2 + f (x∗)− f (xk+1)︸ ︷︷ ︸
≤0

,

so
∥xk+1 − x∗∥2

2 ≤ (1−mα) ∥xk − x∗∥2
2 .

When α ≤ 1
L , we know that mα ∈ (0, 1] since m ≤ L. Therefore, we have

∥xk+1 − x∗∥2
2 ≤ (1−mα)k+1 ∥x0 − x∗∥2

2 .

Equivalently, ∥xk+1 − x∗∥2 ≤ ϵ after at most

O
(

1
mα

log
(
∥x0 − x∗∥2

ϵ

))
iterations.

Compare with previous two cases.
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Exercise 1. Show that we also have

f (xk+1)− f (x∗) ≤ (1−mα)k+1 ( f (x0)− f (x∗)) .

How about ∥∇ f (xk+1)∥2?
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