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Lecture 7–8: Other Basic Descent Methods

Yudong Chen

1 Analysis of gradient descent, cont’d

Consider the gradient descent (GD) iteration with constant stepsize:

xk+1 = xk − α∇ f (xk), ∀k = 0, 1, . . .

where f is L-smooth for L < ∞ and X = Rd.

Lemma 1 (Descent Lemma). If xk+1 = xk − α∇ f (xk), α ∈ (0, 1
L ], then

f (xk+1) ≤ f (xk)−
α

2
∥∇ f (xk)∥2

2 .

1.1 The strongly convex case

Assume f is m-strongly convex and L-smooth, and x∗ ∈ arg minx∈Rd f (x). For all k:

f (x∗) ≥ f (xk) +

〈
∇ f (xk)︸ ︷︷ ︸

1
α (xk−xk+1)

, x∗ − xk

〉
+

m
2
∥x∗ − xk∥2

2 by strong convexity

≥ f (xk+1) +
1

2α
∥xk+1 − x∗∥2

2 −
1

2α
∥xk − x∗∥2

2 +
m
2
∥x∗ − xk∥2

2 same argument as Lec 6 convex case

= f (xk+1) +
1

2α
∥xk+1 − x∗∥2

2 −
(

1
2α
− m

2

)
∥xk − x∗∥2

2 .

Rearranging:
1

2α
∥xk+1 − x∗∥2

2 ≤
(

1
2α
− m

2

)
∥xk − x∗∥2

2 + f (x∗)− f (xk+1)︸ ︷︷ ︸
≤0

,

so
∥xk+1 − x∗∥2

2 ≤ (1−mα) ∥xk − x∗∥2
2 .

When α ≤ 1
L , we know that mα ∈ (0, 1] since m ≤ L. Therefore, we have

∥xk+1 − x∗∥2
2 ≤ (1−mα)k+1 ∥x0 − x∗∥2

2 , ←− convergence rate (1)

i.e., geometric convergence (a.k.a. “linear convergence” in optimization literature.)
Equivalently, ∥xk+1 − x∗∥2 ≤ ϵ after at most

O
(

1
mα

log
(
∥x0 − x∗∥2

ϵ

))
iterations. ←− iteration complexity (2)

Compare with previous two cases.
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Exercise 1. For a simple quadratic function f (x) = ∥x− x∗∥2
2, all measures of optimality (optimality

gap f (x)− f (x∗), gradient norm ∥∇ f (x)∥2
2 and distance to optimum ∥x− x∗∥2

2) are equivalent
up to constants. Try to prove that the same is true for a function that is both strongly convex and
smooth, as such a function is sandwiched between two quadratics. With this in mind, you can try
to further prove geometric convergence in terms of the function value:

f (xk+1)− f (x∗) ≤ (1−mα)k+1 ( f (x0)− f (x∗)) .

How about ∥∇ f (xk+1)∥2?

Remark 1. The bounds in (1) and (2) depend on mα, which equals m
L if we take α = 1

L . Note that
L
m is (an upper bound of) the condition number of the Hessian ∇2 f . Fast convergence if ∇2 f is
well-conditioned.

1.2 Unknown L

All previous analysis is valid when we use a stepsize α ≤ 1
L , which requires knowing L, or at least

an upper bound of L. How to choose α if we don’t know L?

1.2.1 Trial and error

For example:

• Choose the largest α for which GD does not diverge.

• Use your lucky number as the initial value of α. Adjust and see if it works better.

The second option is popular among machine learning practitioners. For example, PyTorch, a
popular package for training neural networks, implements several variants of GD with default
stepsizes like 0.01 or 0.001, which is the starting point for most users.

1.2.2 Exact line search

Choose α as the solution to the one-dimensional optimization problem

min
α>0

f (xk − α∇ f (xk)) .

That is, we find the exact minimum of f along the half line {xk − α∇ f (xk) : α > 0}.
This method is most useful when f has some special structure so that the above 1-D problem

can be solved efficiently at low cost.

1.2.3 Backtracking line search

Start with some initial α0. Sequentially try stepsizes α0, 1
2 α0, 1

4 α0, 1
8 α0, . . . until the descent condition

f (xk − α∇ f (xk)) ≤ f (xk)−
α

2
∥∇ f (xk)∥2

2

is satisfied. Backtracking terminates before or when 1
2t α0 ≤ 1

L is satisfied for the first time, so it
requires no more than O (log (α0L)) function evaluations of f and one gradient computation at xk.

This method is useful when function evaluation is easy but solving the exact linear search
problem is costly.
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2 Other descent methods

There are other descent methods for which the conclusion of the Descent Lemma holds.

Examples:

1. Preconditioned methods:
xk+1 = xk − αSk∇ f (xk),

where Sk is a symmetric positive definite matrix with all eigenvalues in [γ1, γ2], 0 < γ1 <
γ2 < ∞.
From properties of L-smooth functions (Lemma 1 in Lecture 4):

f (xk+1) ≤ f (xk) + ⟨∇ f (xk), xk+1 − xk⟩+
L
2
∥xk+1 − xk∥2

2

= f (xk)− α ⟨Sk∇ f (xk),∇ f (xk)⟩︸ ︷︷ ︸
≥γ1∥∇ f (xk)∥2

2

+
L
2

α2 ∥Sk∇ f (xk)∥2
2︸ ︷︷ ︸

≤γ2
2∥∇ f (xk)∥2

2

≤ f (xk)−
(

αγ1 −
L
2

γ2
2α2

)
︸ ︷︷ ︸

>0 for sufficiently small α

∥∇ f (xk)∥2
2 .

Newton’s method uses Sk =
(
∇2 f (xk)

)−1; need ∇2 f (xk) to have positive eigenvalues for
this to work.
With appropriately chosen Sk, preconditioned methods can converge substantially faster near
x∗ than GD.

2. Gauss-Southwell (aka greedy coordinate descent):

xk+1 = xk − α∇ik f (xk)eik︸ ︷︷ ︸
−pk

where ik = arg max1≤i≤d {−∇i f (xk)}, and eik = [0, 0, . . . , 1︸︷︷︸
ik position

, . . . , 0] is the ik-th standard

basis vector in Rd. Note that
∥pk∥2

2 ≥
1
d
∥∇ f (xk)∥2

2 ,

hence one can show that (exercise) for α = 1
L ,

f (xk+1) ≤ f (xk)−
1

2Ld
∥∇ f (xk)∥2

2 .

This algorithm is most useful when ik and ∇ik f (xk) are much easier to compute than the full
gradient ∇ f (xk).
Can be viewed as steepest descent w.r.t. ℓ1 norm.

3. Randomized coordinate descent. Similar to above, except that ik is chosen uniformly at
random from {1, 2, . . . , d}. See HW2.
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4. Stochastic gradient descent (SGD), where

xk+1 = xk − αg(xk, ξk),

where ξk’s are i.i.d. random variable satisfying Eξk [g(xk, ξk)] = ∇ f (xk). That is, g(xk, ξk) is
an unbiased (but potentially very noisy) estimate of the true gradient at xk. Under certain
assumptions it satisfies the descent condition in expectation. We will discuss SGD later this
semester.

5. Gradient descent w.r.t. ℓp norm, where

xk+1 = arg min
u

{
f (xk) + ⟨∇ f (xk), u− xk⟩+

1
α
∥u− xk∥2

p

}
.

See HW2.

6. Mirror descent, where

xk+1 = arg min
u∈X

{
f (xk) + ⟨∇ f (xk), u− xk⟩+

1
αk

Dψ(u, xk)

}
,

and Dψ(·, ·) is the Bregman divergence generated by a convex function ψ. See HW2.

3 Convergence of descent methods

Consider any iterative method that generates a sequence x0, x1, . . . satisfying the descent condition

f (xk+1) ≤ f (xk)−
β

2
∥∇ f (xk)∥2

2 , ∀k ≥ 0 (3)

for some β > 0.

3.1 General case

Assume f is bounded from below: f (x) ≥ f∗ > −∞, ∀x. The same analysis from the previous
lecture applies since the analysis only uses the descent property (3). This gives

min
0≤i≤k

∥∇ f (xi)∥2 ≤

√
2( f (x0)− f∗)

β(k + 1)
.

However, the analysis for the convex and the strongly convex cases of gradient descent does not
immediately transfer to other descent methods. There, we crucially used that the update was of the
form xk+1 = xk − α∇ f (xk). Below, we show that it is still possible to obtain similar (though slightly
weaker) guarantees as for gradient descent if we are only assuming that our method satisfies (3).
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3.2 Convex case

Assume that f has a global min x∗ and

R0 := max {∥x− x∗∥2 : f (x) ≤ f (x0)} < ∞;

that is, the sublevel set defined by x0 is bounded.
Denote the optimality gap by ∆k := f (xk)− f (x∗). By convexity we have

∆k = f (xk)− f (x∗) ≤ ⟨∇ f (xk), xk − x∗⟩ ≤ R0 ∥∇ f (xk)∥2 .

(Picture) Plugging into the descent condition (3), we obtain

f (xk+1) ≤ f (xk)−
β

2R2
0

∆2
k

=⇒ ∆k+1 ≤ ∆k −
β

2R2
0

∆2
k = ∆k

(
1− β

2R2
0

∆k

)
. (4)

This recursion can be solved in multiple ways. Since 1− x ≤ 1
1+x , ∀x ≥ 0, (4) implies

∆k+1 ≤ ∆k
1

1 + β

2R2
0
∆k

=
1

1
∆k

+ β

2R2
0

.

Inverting both sides gives
1

∆k+1
≥ 1

∆k
+

β

2R2
0

,

and recursively
1

∆k+1
≥ 1

∆0
+

(k + 1)β

2R2
0
≥ (k + 1)β

2R2
0

.

That is,

f (xk+1)− f (x∗) ≤ 2R2
0

β(k + 1)
.

Remark 2. Compare with the bound for GD in the convex case: f (xk+1)− f (x∗) ≤ ∥x0−x∗∥2
2

2α(k+1) .

3.3 Strongly convex case

Assume f is m-strongly convex and has a unique global min x∗. By strong convexity:

f (y) ≥ f (x) + ⟨∇ f (x), y− x⟩+ m
2
∥y− x∥2

2 , ∀x, y.

We minimize both sides over y, and note that the right hand size is minimized at x − 1
m∇ f (x).

Therefore,

f (x∗) = inf
y

f (y) ≥ inf
y

{
f (x) + ⟨∇ f (x), y− x⟩+ m

2
∥y− x∥2

2

}
= f (x)− 1

2m
∥∇ f (x)∥2

2 , ∀x.
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Equivalently,
∥∇ f (x)∥2

2 ≥ 2m [ f (x)− f (x∗)] , ∀x. (5)

Combining with the descent condition (3), we get

f (xk+1)− f (x∗) ≤ f (xk)− f (x∗)− β

2
∥∇ f (xk)∥2

2

≤ f (xk)− f (x∗)− β

2
· 2m [ f (xk)− f (x∗)]

= (1−mβ) · [ f (xk)− f (x∗)] .

Hence we have geometric convergence

f (xk+1)− f (x∗) ≤ (1−mβ)k+1 ( f (x0)− f (x∗)) .

Remark 3. Even if f is not strongly convex, as long as (5) holds, the above analysis goes through.
The condition (5) is called the Polyak-Łojasiewicz (PŁ) condition or gradient domination condition.

Exercise 2. As a quintessential example of a function that is not strongly convex but satisfies PŁ,
consider f (x) = 1

2 x⊤Ax, where the matrix A is p.s.d. but singular. Show that f satisfies PŁ with
m =?

Exercise 3. Can you find a nonconvex function that satisfies PL?

4 Other generalizations of strong convexity

A strongly convex function cannot be flat near the minimum: the function value must grow when
moving away from the minimizer. There are several other conditions that also control the growth
of a function and hence can be viewed as generalizations of strong convexity.

Recall the definition of strong convexity:

f ((1− α)x + αy) ≤ (1− α) f (x) + α f (y)− m
2
(1− α)α ∥y− x∥2

2 , ∀x, y, ∀α ∈ (0, 1). (6)

⇐⇒ f (y) ≥ f (x) + ⟨∇ f (x), y− x⟩+ m
2
∥y− x∥2

2 , ∀x, y. (7)

One may replace the ℓ2 norm on the right hand side by another norm ∥·∥, or by another polynomial
of norm ∥y− x∥r (uniform convexity).

There are further generalization that covers some nonconvex functions. We have talked about
the PL condition (5). PL can be generalized further to the Kurdyka-Łojasiewicz (KL) condition, which
is (5) with ∥∇ f (x)∥r on the LHS. Another generalization is known as the sharpness condition or
Holderian error bounds: a function is called (r, m)-sharp if

f (x)−min
y

f (y) ≥ m
r

min
x∗∈X ∗

∥x− x∗∥r , ∀x

where X ∗ := arg minx∈Rd f (x) denotes the set of minimizers.

Exercise 4. Use (7) to verify that an m-strongly convex function is (2, m)-sharp.

These conditions enable fast convergence of iterative algorithms (faster than merely assuming
smoothness).
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5 Generalization of smoothness (optional)

Complementary to the above “growth” conditions, the smoothness condition stipulates that a
function cannot grow/fluctuate too quickly. One may generalize smoothness by replacing Lipschitz-
continuity of gradient by Holder-continuity.

Definition 1. A differentiable function f : Rd → R is called (κ, L)-weakly smooth for κ ∈ [1, 2]
w.r.t. a norm ∥·∥ if there exists a constant L < ∞ such that

∥∇ f (x)−∇ f (y)∥∗ ≤ L ∥x− y∥κ−1 , ∀x, y.

(2, L)-weak smoothness is the same as the usual L-smoothness. (1, L)-weak smoothness means
∥∇ f (x)−∇ f (y)∥∗ ≤ L, which implies Lipschitz continuity of f .

Example 1. Examples of (weak) smoothness:

1. The log-sum-exp (soft-max) function f (x) = log ∑d
i=1 exi is 1-smooth w.r.t. ∥·∥∞.

2. 1
2 ∥x∥

2
p with p ≥ 2 is (p− 1)-smooth w.r.t. ∥·∥p.

3. 1
2 ∥x∥

p
p with p ∈ [1, 2] is (p, 1)-weakly smooth w.r.t. ∥·∥p.
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