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Lecture 10: Max Norm and Nuclear Norm Relaxations for Matrix Completion
Lecturer: Yudong Chen Scribe: Qilin Li

In this lecture,1 we will first review some matrix norms and introduce max norm. Based on max norm
and nuclear norm respectively, we will present two convex relaxations for matrix completion. We will also
compare their performances. Under the setting with non-uniform observations, the max-norm approach is
more robust.

1 Matrix Norms
There are many matrix norms. Below we discuss some of them, which are useful in developing and analyzing
convex relaxation methods for low-rank matrix estimation.

Caution: In the literature, sometimes a matrix norm has different names/notations, and the same nota-
tion/name is used for different norms. Make sure you know what exactly is the norm being mentioned.

Notation: Below X,Y are d1 × d2 matrices unless otherwise specified. We use Xij and Xi−, respectively,
to denote the (i, j)-th entry and i-th row of X. Denote by 〈X,Y 〉 :=

∑
ij XijYij the trace inner product

between X and Y , and by σi(X) the i-th singular value of X. For a positive integer d, let [d] := {1, 2, . . . , d}.
Given a norm ‖·‖4, its dual norm is

‖X‖∇ := max
Y :‖Y ‖4≤1

〈X,Y 〉 .

By definition, the generalized Holder’s inequality

〈X,Y 〉 ≤ ‖X‖∇ ‖Y ‖4

holds for any X,Y and any dual norm pairs.

1.1 Vectorized Norms
These are vector norms applied to the vectorized version of a matrix.

• Frobenius norm: ‖X‖F :=
√∑

i,j X
2
ij =

√∑
i σi(X)2.

• Element-wise `1 norm: ‖X‖1 :=
∑

i,j |Xij | .

• Element-wise `∞ norm: ‖X‖∞ := maxi,j |Xij | .
1Reading:

• T. Tony Cai and Wen-Xin Zhou. Matrix completion via max-norm constrained optimization. Electronic Journal of
Statistics, Vol. 10 (2016). https://arxiv.org/abs/1303.0341 [Cai and Zhou, 2017]

• (Additional background) Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In Proceedings
of the 18th Annual Conference on Learning Theory (COLT), 2005. https://home.ttic.edu/~nati/Publications/
SrebroShraibmanCOLT05.pdf [Srebro and Shraibman, 2005]

• (Additional background) Nati Linial, Shahar Mendelson, Gideon Schechtman, and Adi Shraibman. (2004). Complex-
ity measures of sign measures. Combinatorica 27, 439–463. https://www.cs.huji.ac.il/~nati/PAPERS/complexity_
matrices.pdf [Linial et al., 2007]
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Note that ‖·‖F is the dual to itself; ‖·‖1 and ‖·‖∞ are dual to each other. We have the following inequalities

1√
d1d2

‖X‖1 ≤ ‖X‖F ≤ ‖X‖1 ,

‖X‖∞ ≤ ‖X‖F ≤
√
d1d2 ‖X‖∞ ,

‖X‖2F = 〈X,X〉 ≤ ‖X‖1 ‖X‖∞ .

1.2 Schatten Norms
These are vector norms applied to the vector of the singular values of a matrix. For each p ∈ [1,∞], the
Schatten-p norm is defined as‖X‖Sp

:= (
∑

i σi(X)p)
1/p

.

• Nuclear/trace norm: ‖X‖S1
= ‖X‖∗ =sum of singular values

• Spectral norm: ‖X‖S∞ = ‖X‖op =largest singular value

• Frobenius norm: ‖X‖S2
= ‖X‖F .

For any conjugate pairs (p, q), i.e., 1
p + 1

q = 1, the norms ‖·‖Sp
and ‖·‖Sq

are dual to each other. In particular,
the nuclear norm and spectral norm are duals.

1.3 Induced Operator Norms
For a pair of vector `a norm ‖·‖a and `b norm ‖·‖b, the induced operator norm for a matrix X is defined as

‖X‖a→b := max
u∈Rd2 :‖u‖a≤1

‖Xu‖b .

• Spectral norm: ‖X‖2→2 = ‖X‖op, a.k.a. THE operator norm. From its definition via induced norm, it
is easy to verify the following sub-multiplicativity properties:

‖XY ‖op ≤ ‖X‖op ‖Y ‖op ,
‖XY ‖F ≤ ‖X‖op ‖Y ‖F .

• Max column sum: ‖X‖1→1 = max1≤j≤d2

∑d1

i=1 |Xij |.

• Max row sum: ‖X‖∞→∞ = max1≤i≤d1

∑d2

j=1 |Xij | .

• Max row `2 norm: ‖X‖2→∞ = max1≤i≤d1

√∑d2

j=1X
2
ij .

• Max entry: ‖X‖1→∞ = ‖X‖∞ = maxi,j |Xij |.

Of particular importance to us is the `∞-to-`1 norm

‖X‖∞→1 = max
u∈{±1}d1
v∈{±1}d2

∣∣∣∣∣∣
∑
i,j

Xijuivj

∣∣∣∣∣∣ = max
u∈{±1}d1
v∈{±1}d2

∣∣〈X,uv>〉∣∣ .
Closely related is the so-called cut norm:

‖X‖� := max
I⊆[d1]
J⊆[d2]

∣∣∣∣∣∣
∑

i∈I,j∈J
Xij

∣∣∣∣∣∣ .
These two norms are equivalent up to a universal constant:2

‖X‖� ≤ ‖X‖∞→1 ≤ 4 ‖X‖� .

Note that exact computation of these two norms is at least as hard as MAX CUT.
2For a proof see Lemma 3.1 in Noga Alon, Assaf Naor: Approximating the cut-norm via Grothendieck’s inequality. STOC

2004. [Alon and Naor, 2004]
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1.4 Max norm and its dual
A less known matrix norm is the max norm:

‖X‖max := min
U,V :X=UV >

‖U‖2→∞ ‖V ‖2→∞ , (1)

for which we recall that ‖U‖2→∞ is the maximum row `2 norm of U . (Not to confuse this max norm with
the element-wise `∞ norm.) Compare (1) with an analogous variational formula for the nuclear norm:3

‖X‖∗ = min
U,V :X=UV >

‖U‖F ‖V ‖F =
1

2
min

U,V :X=UV >

(
‖U‖2F + ‖V ‖2F

)
. (2)

From the variational formulae it is easy to obtain

1√
d1d2

‖X‖∗ ≤ ‖X‖max ≤ ‖X‖∗ .

The dual norm of the max norm is the so-called Grothendieck norm

‖X‖G := max
U,V :‖U‖2→∞=‖V ‖2→∞=1

∣∣〈X,UV >〉∣∣
= max

ui∈Rk:‖ui‖2=1,i∈[d1]

vj∈Rk:‖vj‖2=1,j∈[d2]

∣∣∣∣∣∣
∑
i,j

Xij 〈ui, vj〉

∣∣∣∣∣∣ ,
where k := min{d1, d2}. Compare the above definition to a similar variational formula for the spectral norm
(the dual of the nuclear norm):

‖X‖op = max
U,V :‖U‖F =‖V ‖F =1

∣∣〈X,UV >〉∣∣ .
From the variational formulae it is easy to obtain

‖X‖op ≤ ‖X‖G ≤
√
d1d2 ‖X‖op .

By the Grothendieck’s inequality, we have

‖X‖∞→1 ≤ ‖X‖G ≤ KG ‖X‖∞→1 ,

where KG ≤ 1.783 is the Grothendieck’s constant. Therefore, ‖·‖∞→1 can be viewed as an approximate dual
to the max norm. This fact plays an important role in the analysis of max-norm-based convex relaxation.

We have the following analogous sets of inequalities for the nuclear norm and max norm:

‖X‖F ≤ ‖X‖∗ ≤
√

rank(X) ‖X‖F , (3)

‖X‖∞ ≤ ‖X‖max ≤
√

rank(X) ‖X‖∞ . (4)

Equation (3) is well-known. Equation (4) is from [Linial et al., 2007].

1.5 Max norm, nuclear norm and rank
Both the max and nuclear norms are convex surrogate for the rank. From [Srebro and Shraibman, 2005]:
“Whereas bounding the rank corresponds to constraining the dimensionality of each row of U and V in a
factorization X = UV >, bounding the trace-norm and max-norm corresponds to constraining the norms of
rows of U and V (average row-norm for the trace-norm, and maximal row-norm for the max-norm).”

3We note in passing that the RHS of (2) is related to the regularization effect of weight decay applied to a linear neural
network.

3



The unit balls in these two norms are related to the convex hulls of certain sets of rank-1 matrices.

{X : ‖X‖∗ ≤ 1} = conv
{
uv> : ‖u‖2 = ‖v‖2 = 1

}
,

convM± ⊆ {X : ‖X‖max ≤ 1} ⊆ KG · convM±,

whereM± :=
{
M ∈ {±1}d1×d2 : rank(M) = 1

}
denotes the set of rank-1 sign matrices. The first equation

can be proved by SVD.4. For the second equation above on the max-norm unit ball, see equation (2.3)
in [Cai and Zhou, 2017] and the discussion therein.

Let C be a given convex set. The convex envelop of a (possibly nonconvex) function f : C −→ R is defined
at each point of C as the supremum of all convex function that lie under that function, i.e.,

(convf)(x) := sup
g
{g(x) : g is convex and g ≤ f over C} , for any x ∈ C.

convf is convex because the pointwise supremum preserves convexity. Hence, we can say that convf is the
largest convex function lying under f .

By definition, we have that rank(X) · ‖X‖op ≥ ‖X‖∗, so the nuclear norm is a convex lower bound of the
rank function on the unit ball in the operator norm. In fact, it can be shown that this is the tightest convex
lower bound, i.e., the convex envelope of rank(X) on the set

{
X : ‖X‖op ≤ 1

}
is the nuclear norm ‖X‖∗.

(See Theorem 2.2 in [Recht et al., 2010].)

1.6 The SDP formulation for max-norm relaxation and nuclear-norm relaxation
As shown in [Srebro et al., 2004], the max-norm of a d1 × d2 matrix M can be computed via a semi-definite
program (SDP):

‖M‖max = min
R,W1,W2

R s.t.

(
W1 M
M> W2

)
� 0, diag(W1) ≤ R, diag(W2) ≤ R.

Consequently, the following max-norm constrained problem

min
M

f(M)

s.t. ‖M‖max ≤ R.

can be reformulated a problem with linear-inequality constraints:

min
M,W1,W2

f(M)

s.t.

(
W1 M
M> W2

)
� 0, diag(W1) ≤ R, diag(W2) ≤ R.

If f is a linear function or a convex quadratic function, then the above problem is a SDP problem.5
Similarly, as shown in [Recht et al., 2010, equaiton (2.6)], the nuclear-norm of M can be computed via a

SDP:

‖M‖∗ = min
R,W1,W2

R s.t.

(
W1 M
M> W2

)
� 0, Tr(W1) + Tr(W2) ≤ 2R.

Consequently, the following nuclear-norm constrained problem

min
M

f(M)

s.t. ‖M‖∗ ≤ R.
4For more details, see https://math.stackexchange.com/questions/3951902/convex-hull-of-rank-1-matrices-is-the\

-nuclear-norm-unit-ball
5For a proof, we can use the equivalence on Page 16 of [Freund, 2004]. https://ocw.mit.edu/courses/

electrical-engineering-and-computer-science/6-251j-introduction-to-mathematical-programming-fall-2009/
readings/MIT6_251JF09_SDP.pdf
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can be reformulated as a problem with linear-inequality constraints:

min
M,W1,W2

f(M)

s.t.

(
W1 M
M> W2

)
� 0, Tr(W1) + Tr(W2) ≤ 2R.

Again, if f is a linear function or a convex quadratic function, then the above problem is an SDP.

Later we will see that the max norm has some nice properties, though it is a bit harder to com-
pute/optimize than the nuclear norm (which is given by SVD).

2 Matrix Completion with Non-Uniform Observations
Let M∗ ∈ Rd×d be an unknown rank-r matrix satisfying ‖M∗‖∞ ≤ 1. We observe a matrix Y ∈ Rd×d of the
form

Yij = δij
(
M∗ij + Eij

)
for each (i, j) ∈ [d]× [d], (5)

where

δij =

{
1 with probability pij ,
0 with probability 1− pij ,

is the indicator for observing the (i, j)-th entry, Eij ∈ [−σ, σ] is a zero-mean bounded random variable
representing additive noise, and all the random variables δij , Eij : (i, j) ∈ [d]× [d] are mutually independent.
In words, each entry of M∗ is observed with (non-uniform) probability pij , and the observed entries are
contaminated by σ-bounded noise. This setting is a generalization of the problem in Lecture 1, which
involves uniform, noiseless observations.

Let Ω := {(i, j) : δij = 1} be the set of observed indices. Define the projection PΩ : Rd×d → Rd×d via

(PΩ(X))ij =

{
Xij (i, j) ∈ Ω,

0 (i, j) /∈ Ω,

which keeps the observed entries and zeros out the unobserved ones. The observation model (5) can be
written succinctly as

Y = PΩ(M∗ + E).

We make note of the simple fact that

〈PΩ(A),PΩ(B)〉 = 〈A,PΩ(B)〉 = 〈PΩ(A), B〉 , ∀A,B ∈ Rd×d.

We develop estimators ofM∗ using convex relaxations. We begin by noting that in light of the inequalities
(3) and (4), we have ‖M∗‖∗ ≤

√
r ‖M∗‖F ≤

√
rd and ‖M∗‖max ≤

√
r ‖M∗‖∞ ≤

√
r. These bounds motivate

us to consider the nuclear-norm constrained convex program

M̂nuc := argmin
M :‖M‖∗≤

√
rd

‖PΩ(M − Y )‖2F . (6)

and the max-norm constrained program

M̂max := argmin
M :‖M‖max≤

√
r

‖PΩ(M − Y )‖2F . (7)

Let P = (pij) ∈ [0, 1]d×d be the matrix of observation probabilities, and pmin := mini,j pij be the mini-
mum probability. Recalling Section 1, we have ‖P‖1→1 = maxj

∑
i pij (max column sum of probabilities),

‖P‖∞→∞ = maxi

∑
j pij (max row sum) and ‖P‖1 =

∑
i,j pij (overall sum).

We establish the following.
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Theorem 1. Under the above setting, if pmin ≥ 1
d , then with high probability we have∥∥∥PΩ

(
M̂nuc −M∗

)∥∥∥2

F
. σ

√
rd2 ·max {‖P‖1→1 , ‖P‖∞→∞} (log d)2. (8)

Theorem 2. Under the above setting, if pmin ≥ 1
d , then with high probability we have∥∥∥PΩ

(
M̂max −M∗

)∥∥∥2

F
. σ

√
rd ‖P‖1. (9)

Some remarks are in order.

• To compare the two theorems, we rewrite the nuclear-norm based bound (8) as∥∥∥PΩ

(
M̂nuc −M∗

)∥∥∥2

F
. σ

√
rd ‖P‖1 (log d)2 ·

√
max {‖P‖1→1 , ‖P‖∞→∞} /d

‖P‖1 /d2
.

The RHS has an additional factor γ :=
√

max{‖P‖1→1,‖P‖∞→∞}/d
‖P‖1/d2 when compared with the max-norm

based bound (9). Note that max{‖P‖1→1 , ‖P‖∞→∞}/d is the average observation probability within
the most-observed row/column, whereas ‖P‖1 /d2 is the average probability over the entire matrix.
The more non-uniform the probabilities are, the larger γ is. Therefore, the max-norm approach is
more robust against non-uniform observation probabilities. This advantage of max-norm has also been
observed empirically.

• Theorems 1 and 2 control
∥∥∥PΩ

(
M̂ −M∗

)∥∥∥2

F
, the error on the observed entries. Under mild assump-

tions, one can further show that w.h.p.,∥∥∥PΩ

(
M̂ −M∗

)∥∥∥2

F
&
∑
i,j

pij

(
M̂ij −M∗ij

)2

≥ pmin

∥∥∥M̂ −M∗∥∥∥2

F
. (10)

Combining (10) with the two theorems controls the error over the entire matrix.

• The proof of Theorems 1 and 2 actually does not rely on M∗ being low-rank. They hold as long as
any M∗ has small nuclear norm or max norm.

• In the uniform setting pij = p,∀i, j and assuming (10) holds, the error bounds (8) and (9) become,
after some algebra,

1

d2

∥∥∥M̂ −M∗∥∥∥2

F
.

√
r polylog(d)

pd
;

note the square root on the RHS. This bound is called a slow rate; as mentioned, it is valid for any M∗
with small nuclear/max norm. This rate is in fact minimax optimal for estimating low nuclear/max
norm matrices. Compare with the bound for the spectral method from Lecture 1:

1

d2

∥∥∥M̂spectral −M∗
∥∥∥2

F
.
r log d

pd
,

which is called a fast rate but only valid under the stronger assumption of M∗ being low-rank. This
rate is minimax optimal for estimating low-rank matrices.

3 Proof of Theorem 1
Since M̂nuc is optimal and M∗ is feasible to the program (6), we have the basic inequality∥∥∥PΩ

(
M̂nuc − Y

)∥∥∥2

F
≤ ‖PΩ (M∗ − Y )‖2F ,

⇒
∥∥∥PΩ

(
M̂nuc −M∗ − E

)∥∥∥2

F
≤ ‖PΩ (E)‖2F ,
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where the last step follows from Y = PΩ(M∗ + E). Expanding the squares and rearranging terms gives∥∥∥PΩ

(
M̂nuc −M∗

)∥∥∥2

F
≤ 2

〈
PΩ

(
M̂nuc −M∗

)
,PΩ(E)

〉
.
∣∣∣〈M̂nuc,PΩ(E)

〉∣∣∣+ |〈M∗,PΩ(E)〉| .

The constraint in the program (6) ensures that
∥∥∥M̂nuc

∥∥∥
∗
≤
√
rd and ‖M∗‖∗ ≤

√
rd. By duality between the

nuclear and spectral norms, we have∣∣∣〈M̂nuc,PΩ(E)
〉∣∣∣+ |〈M∗,PΩ(E)〉| ≤

∥∥∥M̂nuc

∥∥∥
∗
‖PΩ(E)‖op + ‖M∗‖∗ ‖PΩ(E)‖op

.
√
rd ‖PΩ(E)‖op .

The (i, j)-th entry of PΩ(E) is zero-mean, σ-bounded with variance . σ2pij . (Exercise) By Matrix Bernstein
we have w.h.p.

‖PΩ(E)‖op . σ
√

max {‖P‖1→1 , ‖P‖∞→∞} log d+ σ log d

. σ
√

max {‖P‖1→1 , ‖P‖∞→∞} (log d)2,

where the last steps holds under the assumption pmin ≥ 1
d . Combining pieces, we obtain∥∥∥PΩ

(
M̂nuc −M∗

)∥∥∥2

F
.
√
rd · σ

√
max {‖P‖1→1 , ‖P‖∞→∞} (log d)2.

This completes the proof of Theorem 1.
Proof of the Exercise:

Proof To apply Matrix Bernstein inequality, we write PΩ(E) as a summation of d2 matrices.

PΩ(E) =

d∑
i,j=1

(δijEij) · Iij ,

where Iij is an indicator matrix with the (i, j)-th entry as 1 and all other entries as 0.
Next, we check the conditions of Matrix Bernstein inequality:

• Since δijEij is the (i, j)-th entry of PΩ(E), we have E[(δijEij) · Iij ] = 0, ∀ i, j.

• ‖(δijEij) · Iij‖op ≤ ‖(δijEij) · Iij‖F =
√
δijE2

ij ≤ σ.

• First, we consider

((δijEij) · Iij) · ((δijEij) · Iij)> = δijE
2
ij · Iii

⇒
d∑

i,j=1

((δijEij) · Iij) · ((δijEij) · Iij)> = diag(

d∑
j=1

δ1jE
2
1j ,

d∑
j=1

δ2jE
2
2j , . . . ,

d∑
j=1

δdjE
2
dj)

⇒

∥∥∥∥∥∥E[

d∑
i,j=1

((δijEij) · Iij) · ((δijEij) · Iij)>]

∥∥∥∥∥∥
op

≤ max
i

d∑
j=1

E[δijE
2
ij ] . max

i

d∑
j=1

σ2pij = σ2 ‖P‖∞→∞ .

Symmetrically, we can prove∥∥∥∥∥∥E[

d∑
i,j=1

((δijEij) · Iij)> · ((δijEij) · Iij)]

∥∥∥∥∥∥
op

. σ2 ‖P‖1→1 .
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Therefore, by the user-friendly form of Matrix Bernstein inequality, we have w.h.p.,

‖PΩ(E)‖op . σ
√

max {‖P‖1→1 , ‖P‖∞→∞} log d+ σ log d.

4 Proof of Theorem 2
By the exactly the same argument as in the proof of Theorem 1, we obtain∥∥∥PΩ

(
M̂max −M∗

)∥∥∥2

F
.
∣∣∣〈M̂max,PΩ(E)

〉∣∣∣+ |〈M∗,PΩ(E)〉| .

The constraint in the program (7) ensures that
∥∥∥M̂max

∥∥∥
max
≤
√
r and ‖M∗‖max ≤

√
r. By duality between

the max norm and Grothendieck norm, we have∣∣∣〈M̂max,PΩ(E)
〉∣∣∣+ |〈M∗,PΩ(E)〉| ≤

∥∥∥M̂max

∥∥∥
max
‖PΩ(E)‖G + ‖M∗‖max ‖PΩ(E)‖G

.
√
r ‖PΩ(E)‖G

.
√
r ‖PΩ(E)‖∞→1 ,

where the last step follows from Grothendieck’s inequality.
Define the shorthand Z := PΩ(E). Recall that ‖Z‖∞→1 := maxu,v∈{±1}d

∣∣∣∑i,j Zijuivj

∣∣∣. Fix an arbitrary

pair (u, v) ∈ {±1}d×{±1}d. The quantity
∑

i,j Zijuivj is the sum of d2 independent, zero-mean, σ-bounded
random variables, each of which has variance . σ2pij . The (scalar) Bernstein gives

P


∣∣∣∣∣∣
∑
i,j

Zijuivj

∣∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
− ct2∑

i,j σ
2pij + σt

)
= 2 exp

(
− ct2

σ2 ‖P‖1 + σt

)
,

where c > 0 is a universal constant. By a union bound over all 22d possible pairs of (u, v), we get

P {‖Z‖∞→1 ≥ t} ≤ 22d · 2 exp

(
− ct2

σ2 ‖P‖1 + σt

)
.

Taking t = C
(
σ
√
d ‖P‖1 + σd

)
for a sufficiently large constant C, we obtain that with probability at least

1− 2−d,
‖Z‖∞→1 . σ

√
d ‖P‖1 + σd . σ

√
d ‖P‖1,

where the last steps holds under the assumption pmin ≥ 1
d . Combining pieces, we obtain∥∥∥PΩ

(
M̂max −M∗

)∥∥∥2

F
.
√
r · σ

√
d ‖P‖1.
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