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Lecture 12: Lipschitz Concentration and Gaussian Comparison
Lecturer: Yudong Chen Scribe: Xufeng Cai

In this lecture,1 we will briefly discuss the general setup of statistical learning, where one often needs
to bound the supremum of random processes. Motivated by this problem, we will present the Lipschitz
concentration inequalities and the Gaussian comparison inequality as useful tools for controlling random
processes.

1 Statistical Learning

Setup. Observe (x1, y1), . . . , (xn, yn) ∈ X×[0, 1], where xi
i.i.d.∼ µ and yi = f∗(xi). Here µ is some unknown

distribution, and f∗ : X → [0, 1] is also some unknown regression function. For each function f ∈ F , we
define

1. empirical risk: Ln(f) = 1
n

∑n
i=1 (f (xi)− f∗ (xi))

2
, which can be understood as the training error;

2. population risk: L(f) = EX∼µ (f(X)− f∗(X))
2
, which can be understood as the test error.

Ideally, we want to find the minimizer of the population risk, namely

f0 , arg min
f∈F

L(f),

but L(f) is usually not computable without knowing µ and f∗. Instead, we consider the empirical risk
minimization (ERM) approach:

f̂ = arg min
f∈F

Ln(f).

We use f̂ as our estimator for f∗.

Risk decomposition. To bound the population risk of the empirical risk minimizer f̂ , we may decompose
the risk as follows:

L(f̂)︸︷︷︸
test error

=
[
L(f̂)− Ln(f̂)

]
︸ ︷︷ ︸
generalization gap

+ Ln(f̂)︸ ︷︷ ︸
training error

≤
[
L (f∗)− Ln(f̂)

]
+ Ln (f0)

=
[
L(f̂)− Ln(f̂)

]
+ [Ln (f0)− L (f0)]︸ ︷︷ ︸

estimation error

+ L (f0)︸ ︷︷ ︸
approximation error

(i)

≤ 2 sup
f∈F
|Ln(f)− L(f)| + L (f0) .

1 References:

1. Section 3.1, 5.4, 6.2 in ”High-Dimensional Statistics: A Non-Asymptotic Viewpoint”, Martin J. Wainwright, Cambridge
University Press, 2019,

2. (Additional reading) Sec 3.3 in ”Lecture Notes for Statistics 311/Electrical Engineering 377: Information Theory and
Statisti cs”, John Duchi,

3. (Additional reading) Section 5, 7.2, 7.3 in ”High -Dimensional Probability: An Introduction with Applications in Data
Science”, Roman Vershynin, Cambridge University Press, 2018.
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(Note that step (i) may not be tight, especially when F is be very large.) Equivalently, by rearranging terms,
we get the bound on the so-called excess risk :

L(f̂)− L (f0)︸ ︷︷ ︸
excess risk

≤ 2 sup
f∈F
|Ln(f)− L(f)|

= 2 sup
f∈F

∣∣∣∣ 1n
n∑
i=1

(f (xi)− f∗ (xi))
2 − EX∼µ (f(X)− f∗(X))

2

∣∣∣∣︸ ︷︷ ︸
=:Zf

.

In the above argument, in order to bound the test error and excess risk, we need to control a quantity of the
form supf Zf . It can be done in two steps.

1. Bound the deviation supf Zf − E supf Zf using concentration inequalities.

2. Bound the expectation E supf Zf , which is the supremum of empirical process.

In this lecture, we will introduce some tools for the two tasks above.

2 Lipschitz Concentration

In this section, we introduce several concentration inequalities for Lipschitz functions. We first summarize
some terminology for a function f : Rn → R. We say f is

1. separately convex if the function xk 7→ f (x1, . . . , xk, . . . , xn) is convex for each 1 ≤ k ≤ n and each
fixed {xj : j 6= k}.

2. Lipschitz (w.r.t. `2 norm) if |f(x)− f(y)| ≤ L‖x− y‖2 for any x, y ∈ Rn.

Then we present our main theorem for this section.2

Theorem 1. Let X1, . . . , Xn be independent random variables supported on [a, b]. Further let f : Rn → R
be separately convex and L-Lipschitz. Then for all t ≥ 0

P [f (X1, . . . , Xn) ≥ E [f (X1, . . . , Xn)] + t] ≤ exp

(
− t2

4L2(b− a)2

)
.

Remark Let X = (X1, . . . , Xn). Theorem 1 shows that the upper tail of f(X) behaves like a sub-Gaussian
random variable with parameter O(L2(b− a)2).

2.1 Variants and extensions

In this section, we present some variants and extensions of Theorem 1.
The next theorem provides a two-sided bound on f(X) under the stronger joint convexity assumption.

Theorem 2 (Two-sided bound). If X1, . . . , Xn are independent random variables, each bounded on [a, b],
and f : Rn → R is convex and L-Lipschitz. Then for all t ≥ 0,

P [|f (X1, . . . , Xn)− E [f (X1, . . . , Xn)] | ≥ t] ≤ 2 exp

(
− t2

2L2(b− a)2

)
.

2 To prove the theorem, we can use the Entropy Method. We first prove that it holds for n = 1 dimension, and then
generalize it to the n-dimensional case (tensorization step).
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Remark Theorem 2 shows that f(X) is sub-Gaussian with parameter O(L2(b− a)2). Note that the joint
convexity assumption is necessary for getting a two sided bound.

For Gaussian random variables, we can get rid of the assumption of convexity while still getting a two-
sided bound.

Theorem 3 (Gaussian Case). If Xi
i.i.d.∼ N (0, 1) for 1 ≤ i ≤ n, and f : Rn → R is L-Lipschitz. Then for

all t ≥ 0

P [|f (X1, . . . , Xn)− E [f (X1, . . . , Xn)] | ≥ t] ≤ 2 exp

(
− t2

2L2

)
.

The above inequalities can be compared with the Bounded Difference Inequality, which can also be
used to establish concentration of functions of many independent variables. Below we use the notation
x−k := (x1, . . . , xk−1, xk+1, . . . , xn).

Theorem 4 (Bounded Difference Inequality). Suppose X1, . . . , Xn are independent random variables, and
f : Rn → R satisfies the bounded difference property

|f (xk, x−k)− f (x′k, x−k)| ≤ Lk, ∀k, xk, x′k, x−k.

Then for all t ≥ 0

P [|f (X1, . . . , Xn)− E [f (X1, . . . , Xn)] | ≥ t] ≤ 2 exp

(
− 2t2∑n

k=1 L
2
k

)
.

Remark Theorem 4 says that if f has bounded difference, then f(X) is a sub-Gaussian random variable
with parameter O(

∑n
k=1 L

2
k). In many problems, we have

∑n
k=1 L

2
k � L2, where L is the Lipschitz constant

of f , in which case Theorem 4 gives weaker results than Theorems 1-3.

2.2 Applications

In this part, we discuss some applications where we can use Lipschitz concentration inequalities.

2.2.1 Concentration of norm

Note that the function x 7→ ‖x‖2 is convex, and 1-Lipschitz by the triangular inequality

|‖X‖2 − ‖Y ‖2| ≤ ‖X − Y ‖2.

Then for X = (X1, . . . , Xn) with independent bounded or Gaussian Xi’s, Theorem 2 and 3 give

‖X‖2 − E [‖X‖2] is O(1)-sub-Gaussian.

If Xi’s are bounded, then the function x 7→ ‖x‖2 also satisfies the bounded difference property

|‖x1, . . . , xk, . . . , xn‖2 − ‖x1, . . . , x
′
k, . . . , xn‖2| ≤ |xk − x

′
k| ≤ Lk = O(1)

Theorem 4 gives
‖X‖2 − E [‖X‖2] is O(n)-sub-Gaussian,

which is a much weaker result.
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2.2.2 Maximum singular value of random matrices

Consider a random matrix X ∈ Rn×m with Xij independently and identically distributed as either Gaussian
or bounded. We consider the operator norm (the largest singular value) of X, which can be written as a
supremum as follows:

‖X‖op = maximum singular value of X = sup
‖u‖2≤1,‖v‖2≤1

uTXv.

Note that the operator norm ‖ · ‖op is

1. convex, since it is the maximum of affine functions, and

2. 1-Lipschitz with respect to ‖ · ‖F , since |‖X‖op − ‖Y ‖op| ≤ ‖X − Y ‖op ≤ ‖X − Y ‖F.

By Theorem 2 and 3, ‖X‖op − E [‖X‖op] is O(1)-sub-Gaussian. Note that the sub-Gaussian parameter is
independent of the dimension n,m.

2.2.3 Any singular values of a Gaussian matrix

Consider a random matrix X ∈ Rn×m with Xij independently and identically distributed as Gaussian
N(0, 1), and let σk(X) = k-th largest singular value of X. (Note that σ1(X) = ‖X‖op). Observe that σk(·)
is

1. NOT convex for k ≥ 2, but

2. 1-Lipschitz, since |σk(X)− σk(Y )| ≤ ‖X − Y ‖op ≤ ‖X − Y ‖F (Weyl’s Inequality).

So we restrict our analysis to the Gaussian case, as it does not require convexity. By Theorem 3, we have

σk(X)− E [σk(X)] is O(1)-sub-Gaussian.

2.2.4 Rademacher complexity

Let A ⊂ Rn. The Rademacher complexity of A is

Rn(A) , E

[
sup
a∈A

n∑
i=1

aiεi

]
,

where εi ∈ {−1,+1} are i.i.d. Rademacher random variables. Let R̂n(A) , supa∈A
∑n
i=1 aiεi. Note that

R̂n(A) is

1. a convex function of ε := (ε1, . . . , εn), and

2. W (A)-Lipschitz: |supa∈A〈a, ε〉 − supa∈A 〈a, ε′〉| ≤ |supa∈A 〈a, ε− ε′〉| ≤ sup
a∈A
‖a‖2︸ ︷︷ ︸

W (A)

‖ε− ε′‖2.

Here W (A) := supa∈A ‖a‖2 is the width/radius of the set A. By Theorem 2, we have

P
(∣∣∣R̂n(A)−Rn(A)

∣∣∣ ≥ t) ≤ 2 exp

(
−t2

8W (A)2

)
.

4



2.3 Other Remarks

1. Theorem 2 and 3 imply the usual Hoeffding’s inequality, as the function f(X) =
∑n
i=1Xi is convex

and
√
n-Lipschitz.

2. There are Bernstein versions of these inequalities that account for the variance.

3. This type of inequalities are often used to bound f(x) = supg∈G
1
n

∑n
i=1 g (xi) (supremum of empirical

process). In particular, we have the “Functional Hoeffding Inequality”:

Theorem 5 (Functional Hoeffding Inequality). If Xi ∈ Xi, i = 1, . . . , n are independent RV’s, and for
all g ∈ G,

g (xi) ∈ [ai,g, bi,g] , ∀xi ∈ Xi,
then

P(f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≥ t) ≤ exp

(
− nt

2

4L2

)
,

where L2 , supg∈G

{
1
n

∑n
i=1 (bi,g − ai,g)2

}
.

Note that if we instead apply Theorem 4 (bounded difference inequality) to the above setting, it would

involve a quantity of the form L2 = 1
n

∑n
i=1 supg∈G (bi,g − ai,g)2, which usually leads to weaker result

than the functional Hoeffding bound.

3 Gaussian Comparison Inequality

In this section, we present Gaussian Comparison Inequalities, which can be used to bound the expectation
E supf Zf .

Theorem 6 (Slepian’s Inequality). Let Z, Y ∈ RN be zero-mean Gaussian vectors such that

E
[
Z2
i

]
= E

[
Y 2
i

]
,∀i

E [ZiZj ] ≥ E [YiYj ] ,∀i, j.

Then
E
[
max
i
Zi

]
≤ E

[
max
i
Yi

]
.

Remark

1. Note that the condition E
[
Z2
i

]
= E

[
Y 2
i

]
shows the variances of Zi and Yi are equal for all i, as they are

zero-mean. Also, the condition E [ZiZj ] ≥ E [YiYj ] ,∀i, j means that Zi’s are more correlated than Yi’s.
So Theorem 6 basically tells us that for zero-mean Gaussian vectors under the condition that variances
are equal, high correlations reduce the expectation of maximum. We can think of the extreme case in
which Zi’s are all identical to each other.

2. Slepian’s Inequality holds for any N , so it can be used to compare the expectation of the supremum
over infinite sets.

There is a more general Gaussian comparison inequality that does not require equal variance.

Theorem 7 (Sudakov-Fernique’s Inequality). Let Z, Y ∈ RN be zero-mean Gaussian vectors such that

E(Zi − Zj)2 ≤ E(Yi − Yj)2,∀i, j.

Then
E
[
max
i
Zi

]
≤ E

[
max
i
Yi

]
.

It is clear that Theorem 7 strictly generalizes Theorem 6.
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3.1 Application to Gaussian matrix

Suppose X ∈ Rn×n, where Xij
i.i.d.∼ N (0, 1). We want to bound E [‖X‖op] = E

[
supu,v∈Sn−1 uTXv

]
, where

Sn−1 denotes the unit sphere in Rn. To do so, we compare two processes

Zuv := uTXv =
〈
X,uvT

〉
,

Yuv := gTu+ hT v, where g, h ∼ N (0, In) and g ⊥ h.

For all u, v, ũ, ṽ ∈ Sn−1, we have

E
[
(Zuv − Zũṽ)2

]
= E

[〈
X,uvT − ũṽT

〉2]
=
∥∥uvT − ũṽT∥∥2

F

= ‖ṽ‖22‖u− ũ‖22 + ‖u‖22‖v − ṽ‖22 + 2
(
‖u‖22 − 〈u, ũ〉

)︸ ︷︷ ︸
≥0

(
〈v, ṽ〉 − ‖ṽ‖22

)︸ ︷︷ ︸
≤0

≤ ‖u− ũ‖22 + ‖v − ṽ‖22.

On the other hand, we get

E
[
(Yuv − Yũṽ)2

]
= E

[(
gT (u− ũ) + hT (v − ṽ)

)2]
= ‖u− ũ‖22 + ‖v − ṽ‖22.

So E
[
(Zuv − Zũṽ)2

]
≤ E

[
(Yuv − Yũṽ)2

]
. By Sudakov-Fernique (Theorem 7), we have

E

[
sup

u,v∈Sn−1

uTXv

]
≤ E

[
sup

u,v∈Sn−1

gTu+ hT v

]
= E [‖g‖2 + ‖h‖2]

(i)

≤
√
E [‖g‖22] +

√
E [‖h‖22]

(ii)
= 2
√
n,

where for (i) we use Jensen’s inequality as
√
· is concave. Note that here in (ii), the constant 2 is asymptot-

ically tight.
By results of Lipschitz concentration in Section 2.2, we have ‖X‖op−E [‖X‖op] is O(1)-sub-Gaussian, so

P [|‖X‖op − E [‖X‖op]| ≥ t] ≤ 2e−t
2/4.

Combining this concentration result with the bound on E [‖X‖op], we have

‖X‖op ≤ (2 + ε)
√
n, with probability ≥ 1− 2e−ε

2n/4.

In particular, taking ε = 1 gives

‖X‖op ≤ 3
√
n, with probability ≥ 1− 2e−n/4.

Remark

1. The bound we obtained here is better than the bound by matrix Bernstein inequality by a C
√

log n
multiplicative factor.

2. If X ∈ Rn×m, we have E [‖X‖op] ≤
√
n+
√
m. The proof is left as an exercise. Furthermore, we have

E [λmin(X)] ≈
√
n−
√
m assuming n ≥ m.
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