
CS 839 Probability and Learning in High Dimension Lecture 15 - 03/28/2022

Lecture 15: Statistical Learning
Lecturer: Yudong Chen Scribe: Jenny Wei

In this lecture, We will derive the estimation error in the learning task and introduce a Rademacher
complexity based technique to upper bound it. We will also see one example as the application of this
bound.1

1 Problem Set Up

Consider the following learning task. Let f∗: X → [0, 1] being the unknown true regression function. We
observe n data points (x1, f

∗(x1)), . . . , (xn, f
∗(xn)), where the feature vectors xi’s are sampled i.i.d. from

some unknown distribution µ. The goal is to estimate f∗ given the data.
For a given function f : X→ [0, 1], define the population risk (a.k.a. test error):

L(f) = Ex∼µ
(
f(x)− f∗(x)

)2

and the empirical risk (a.k.a. training error):

Ln(f) =
1

n

n∑
i=1

(
f(xi)− f∗(xi)

)2

.

Ideally, we want to find the population risk minimizer fo = arg minf∈F L(f), which is however not com-
putable since f∗ and µ. As a surrogate, we consider the empirical risk minimizer (ERM)

f̂ = arg min
f∈F

Ln(f).

Our goal is to control the population risk of the ERM f̂ .

Risk decomposition: We can decompose the population risk of f̂ as follows

L(f̂)︸︷︷︸
test error

=
(
L(f̂)− Ln(f̂)

)
︸ ︷︷ ︸
generalization gap

+ Ln(f̂)︸ ︷︷ ︸
training error

≤
(
L(f̂)− Ln(f̂)

)
+ Ln(fo)

=
(
L(f̂)− Ln(f̂)

)
+ (Ln(fo)− L(fo))︸ ︷︷ ︸

statistical error

+ L(fo)︸ ︷︷ ︸
approximation error

,

where the inequality above holds since f̂ minimizes Ln. We have mentioned that L(f̂)−Ln(f̂) is called the

generalization gap/error, which is the gap between the test and training error of f̂ . The first two terms

1Reading:

• Section 4.1 and 4.2 in [Wainwright, 2019]

• Section 8.4 in [Vershynin, 2018]

• Section 3.3 in [Duchi, 2021]
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in the last line above are the differences between an empirical quantity (defined by Ln) and its population
counterpart (defined by L). These two terms represent the statistical/estimation error due to having a
finite number of data points. The last term L(fo) measures how well the function class F can approximate
the true function f∗ under the real data distribution µ; this term represents the approximation error.

We can upper bound the statistical error error by the supremum of the difference:(
L(f̂)− Ln(f̂)

)
+ (Ln(fo)− L(fo)) ≤ 2 sup

f∈F
|Ln(f)− L(f)|,

which leads to the bound

L(f̂)− L(fo)︸ ︷︷ ︸
excess risk

≤ 2 sup
f∈F
|Ln(f)− L(f)|.

In what follows, we establish upper bound on the above supremum using Rademacher complexity.

2 Upper Bound Using Rademacher Complexity

Assume F is [0, 1]-bounded, i.e. ∀f ∈ F , ∀x ∈ X : f(x) ∈ [0, 1]. Also assume f∗ ∈ F . Recall that we consider
the mean square loss. The supremum above can be written as

sup
f∈F
|Ln(f)− L(f)| = sup

f∈F

∣∣∣ 1
n

n∑
i=1

(
f(xi)− f∗(xi)

)2

︸ ︷︷ ︸
g(xi)

−E
(
f(x)− f∗(x)

)2∣∣∣
= sup

g∈G

∣∣∣ 1
n

n∑
i=1

g(xi)− E[g(xi)]
∣∣∣,

where G ∆
=

{
x 7→

(
f(x)− f∗(x)

)2
}

. Note that the quantity of the form sup−E sup can be bounded by

concentration inequalities. Below we focus on bounding the expectation E sup.

2.1 Symmetrization

Let (ε1, . . . , εn) be i.i.d Rademacher random variables. By the symmetrization argument in Theorem 8 of
lecture 14, we have

E sup
g∈G

∣∣∣ 1
n

n∑
i=1

(g(xi)− Eg(xi))
∣∣∣ ≤ 2ExEε sup

g∈G

∣∣∣ 1
n

n∑
i=1

εig(xi)
∣∣∣.

We introduce some definitions. Define empirical Rademacher complexity of G as

Rn(G|x)
∆
= Eε sup

g∈G

∣∣∣ 1
n

n∑
i=1

εig(xi)
∣∣∣,

and the Rademacher complexity of G as

Rn(G)
∆
= Ex[Rn(G|x)].

Using these notations, we have established the following:

Theorem 1 (Symmetrization Bound).

E sup
g∈G

∣∣∣ 1
n

n∑
i=1

(
g(xi)− Eg(xi)

)∣∣∣ ≤ 2Rn(G) = 2Ex[Rn(G|x)].
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2.2 Contraction

Recall that g(xi) :=
(
f(xi) − f∗(xi)

)2

, and that f and f∗ are [0, 1]-bounded. Also note that the square

function φ : θ 7→ θ2 is 2-Lipschitz over [−1.1]. By the Rademacher contraction principle in Theorem 7 from
Lecture 14, we have

Rn(G|x) = Eε sup
f∈F

∣∣∣ 1
n

n∑
i=1

εi

(
f(xi)− f∗(xi)

)2∣∣∣
= Eε sup

f∈F

∣∣∣ 1
n

n∑
i=1

εiφ
(
f(xi)− f∗(xi)

)∣∣∣
≤ 2Eε sup

f∈F

∣∣∣ 1
n

n∑
i=1

εi
(
f(xi)− f∗(xi)

)∣∣∣ contraction principle

≤ 4Eε sup
f∈F

∣∣∣ 1
n

n∑
i=1

εif(xi)
∣∣∣ f∗ ∈ F

= 4Rn(F|x).

It follows that Rn(G) ≤ 4Rn(F).

2.3 Putting Together

Recapping the arguments above, we have

Ln(f̂)− L(fo) . E sup
f∈F

∣∣∣Ln(f)− L(f)
∣∣∣ risk decomposition

= sup
f∈F

∣∣∣ 1
n

n∑
i=1

(
f(xi)− f∗(xi)

)2

− E
(
f(x)− f∗(x)

)2∣∣∣
= sup

g∈G

∣∣∣ 1
n

n∑
i=1

[
g(xi)− E g(xi)

]∣∣∣
. Rn(G) symmetrization

. Rn(F) contraction principle

= Ex Eε sup
f∈F

∣∣∣ 1
n

n∑
i=1

εif(xi)
∣∣∣.

We have upper bounded the supremum of one empirical process by that of another, and both processes are in-
dexed by f ∈ F . We are doing this becauseRn(F) = Ex[Rn(F|x)] is often easier to control. In particular, we
can bound Rn(F|x) conditioned on the data x. For fixed x, the quantity Rn(F|x) = Eε supf∈F | 1n 〈ε, f(X)〉|
is the supremum of a (canonical) Rademacher process. To control this supremum, we may use the following
techniques:

• Union bound

• Dudley integral bound (e.g., when F is the set of Lipschitz functions; see Lecture 14 for details.)

• VC-dimension (usually used for binary functions; not covered in this course)

• Talagrand comparison: Eε supf∈F |〈ε, f(X)〉| . Eg∼N (0,I) supf∈F |〈g, f(X)〉|. Then we can use any
techniques for Gaussian process to bound the RHS.

In the following section, we give an example for bounding Rn(F) and Rn(F|x) using union bound.
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3 Example: Glivenk-Cantelli Uniform Law of Large Number (ULLN)

Let x1, . . . , xn be i.i.d random variables with distribution µ and Cumulative Distribution Function (CDF)
F (θ) = Pr [x1 ≤ θ] = E[1{x1 ≤ θ}].

We can estimate the true CDF F using empirical CDF, defined as

F̂ (θ) :=
1

n

n∑
i=1

1{x1 ≤ θ} =
1

n

n∑
i=1

gθ(xi),

where we have Introduced the short hand gθ(x) := 1{x ≤ θ}. Denote the set of such indicator functions by

G ∆
= {gθ : θ ∈ R}. Note that the functions gθ are not Liptschitz.

We have

E sup
θ∈R

∣∣∣F̂ (θ)− F (θ)
∣∣∣ = E sup

g∈G

∣∣∣ 1
n

n∑
i=1

g(xi)− E g(x1)
∣∣∣

≤ Rn(G) (Theorem 1)

= ExRn(G|x)

=
1

n
Ex Eε sup

θ∈R

∣∣∣ n∑
i=1

εigθ(xi)
∣∣∣.

Let us condition on fixed x1, . . . , xn; assume w.l.o.g. that x1 ≤ x2 ≤ · · · ≤ xn. Note that the n-dimensional
vector

(
gθ(x1), . . . , gθ(xn)

)
∈ {0, 1}n can take on at most n+ 1 values:

(0, 0, . . . , 0)

(1, 0, . . . , 0)

(1, 1, . . . , 0)

...

(1, 1, . . . , 1)

Therefore, supθ∈R

∣∣∣∑i εigθ(xi)
∣∣∣ is the supremum of at most (n + 1) random variables. Moreover, for each

θ ∈ R, the random variable εigθ(xi) is zero-mean and lies in the interval ∈ [−1, 1]. It follows that the sum∑
i εigθ(xi) is a zero-mean, O(n)-sub-Gaussian random variable by Hoeffding inequality.
Using bound on the maximum of a finite number of sub-Gaussian random variables (Lecture 13, Lemma

3), we obtain

E sup
θ∈R

∣∣∣ n∑
i=1

εigθ(xi)
∣∣∣ .√n log(n+ 1).

Combining pieces, we obtain the following upper bound on the expectation:

E sup
θ∈R

∣∣∣F̂ (θ)− F (θ)
∣∣∣ ≤√ log n

n
.

We can further use the Bounded Difference Inequality (Lecture 14, Theorem 4) to prove concentration
around the expectation. Together, we obtain the following theorem:

Theorem 2. With probability at least 1− e−nδ2 ,

sup
θ∈R

∣∣∣F̂ (θ)− F (θ)
∣∣∣ ≤√ log n

n
+ δ.

Hence supθ∈R

∣∣∣F̂ (θ)− F (θ)
∣∣∣ a.s.−−→ 0.
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Remark: We can remove the
√

log n factor using Dudley’s integral bound and VC-dimension.
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