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Lecture 15: Statistical Learning

Lecturer: Yudong Chen Scribe: Jenny Wei

In this lecture, We will derive the estimation error in the learning task and introduce a Rademacher
complexity based technique to upper bound it. We will also see one example as the application of this
bound []

1 Problem Set Up

Consider the following learning task. Let f*: ¥ — [0, 1] being the unknown true regression function. We
observe n data points (z1, f*(z1)),..., (2, f*(z,)), where the feature vectors x;’s are sampled i.i.d. from
some unknown distribution u. The goal is to estimate f* given the data.

For a given function f : X — [0, 1], define the population risk (a.k.a. test error):

£(f) = By (7@) — 1 (@)’

and the empirical risk (a.k.a. training error):

n

L) =3 () - 1)

=1

Ideally, we want to find the population risk minimizer f, = argmin;c £(f), which is however not com-
putable since f* and p. As a surrogate, we consider the empirical risk minimizer (ERM)

f =argmin £,,(f).
fer

Our goal is to control the population risk of the ERM f .

Risk decomposition: We can decompose the population risk of f as follows

o) = (el -h)+ Lalh)
—~— ——

test error L training error
generalization gap

< (C(f) = Lalf)) + Lal£)
= (L) = LalD) + (Lalfe) = LGN+ £(f)

——

approximation error

statistical error

where the inequality above holds since f minimizes £,,. We have mentioned that L( f ) — L f ) is called the
generalization gap/error, which is the gap between the test and training error of f. The first two terms

1 Reading:
e Section 4.1 and 4.2 in [Wainwright, 2019]
e Section 8.4 in [Vershynin, 2018|
e Section 3.3 in [Duchi, 2021



in the last line above are the differences between an empirical quantity (defined by £,,) and its population

counterpart (defined by £). These two terms represent the statistical/estimation error due to having a

finite number of data points. The last term L(f,) measures how well the function class F can approximate

the true function f* under the real data distribution w; this term represents the approximation error.
We can upper bound the statistical error error by the supremum of the difference:

(£0F) = L)) + (£alfo) = £(£)) < 2500 [£a(f) = £(F)];
fer

which leads to the bound

L(f) = £(fo) < 2sup [La(f) = L)
excess risk rer

In what follows, we establish upper bound on the above supremum using Rademacher complexity.

2 Upper Bound Using Rademacher Complexity

Assume F is [0, 1]-bounded, i.e. Vf € F,Vz € X: f(x) € [0,1]. Also assume f* € F. Recall that we consider

the mean square loss. The supremum above can be written as

n

sup [£,(F) — £(7)] = sup | -3 (Fla) — £*(@)) ~E(f(@) — ()

2 ‘

feF fer!n
g(x:)
=sup|— Y g(z;) )}‘,
sup Z ; ;i

2
where G 2 {x — (f(x) — f*(:v)) } Note that the quantity of the form sup —Esup can be bounded by

concentration inequalities. Below we focus on bounding the expectation E sup.

2.1 Symmetrization
Let (e1,...,€,) be i.i.d Rademacher random variables. By the symmetrization argument in Theorem 8 of
lecture 14, we have

n n

Esup |~ S (glei) ~ Eg(e:)| < 2E.Ecsup| 3 esglan)]

geg'n geg ' ]

We introduce some definitions. Define empirical Rademacher complexity of G as

Rn(g|x) E sup 72619 xl

geg

and the Rademacher complexity of G as
A

Using these notations, we have established the following:

Theorem 1 (Symmetrization Bound).

n

Esup %Z (9(xi) - Eg(ﬂ?i))’ < 2R,(G) = 2E,[Rn(G2)].



2.2 Contraction

2
Recall that g(x;) = (f(a;z) - f*(m,)) , and that f and f* are [0,1]-bounded. Also note that the square

function ¢ : @ — 62 is 2-Lipschitz over [~1.1]. By the Rademacher contraction principle in Theorem 7 from
Lecture 14, we have

1 < . 2

Rn(g|$) = ]Ee ]Sclelg-)_ E i:E - €; (f(ﬂ?l) — f (LL'Z)) ‘
1 — .

—E, sup E?ﬂjgm(f(xi) —f (xi))’

1
< 2E. sup |— Z & (f(zi) — [ (21)) ’ contraction principle
feFin - —

n

1
< 4E, sup fZeif(xi)

fer i3

= 4R, (Flz).

fferF

It follows that R, (G) < 4R, (F).

2.3 Putting Together

Recapping the arguments above, we have

Lo(f) = £(f,) S Esup
fer

Ln(f)— E(f)‘ risk decomposition

n

S Ra(9) symmetrization
S Ru(F) contraction principle

We have upper bounded the supremum of one empirical process by that of another, and both processes are in-
dexed by f € F. We are doing this because R,,(F) = E;[R,(F|z)] is often easier to control. In particular, we
can bound R, (F|z) conditioned on the data x. For fixed z, the quantity R, (F|z) = Ecsup;cr |+ (e, f(X))|
is the supremum of a (canonical) Rademacher process. To control this supremum, we may use the following
techniques:

e Union bound
e Dudley integral bound (e.g., when F is the set of Lipschitz functions; see Lecture 14 for details.)
e VC-dimension (usually used for binary functions; not covered in this course)

e Talagrand comparison: Ecsup,cx[{e, f(X))| S Egunro,1)supsez [(g, f(X))|. Then we can use any
techniques for Gaussian process to bound the RHS.

In the following section, we give an example for bounding R, (F) and R, (F|z) using union bound.



3 Example: Glivenk-Cantelli Uniform Law of Large Number (ULLN)

Let z1,...,z, be ii.d random variables with distribution p and Cumulative Distribution Function (CDF)
F(0) =Pr[z, < 0] =E[1{z; <0}].
We can estimate the true CDF F' using empirical CDF, defined as

F(9) := Z 1{z; < 0} = de ),

i=1
where we have Introduced the short hand gg(z) := 1{x < 0}. Denote the set of such indicator functions by
G2 {go : 0 € R}. Note that the functions gy are not Liptschitz.

We have
Esup |F ‘—Esup = g(z;) —Eg( xl)’
0ER geg Z
< RA(G) (Theorem 1))
=E, R.(G|z)
= Ea: Ee sup ‘ €90\ L5
sup | 2 cigo )
Let us condition on fixed z1, . . ., z,; assume w.l.o.g. that 1 < z9 < --- < x,,. Note that the n-dimensional
vector (go(z1),...,90(x,)) € {0,1}™ can take on at most n + 1 values:
(0,0,...,0)
(1,0,...,0)
(1,1,...,0)
(1,1,...,1)

Therefore, supycp ’ > €igo(x;)| is the supremum of at most (n + 1) random variables. Moreover, for each

0 € R, the random variable €;gg(x;) is zero-mean and lies in the interval € [—1,1]. It follows that the sum
>, €igo(x;) is a zero-mean, O(n)-sub-Gaussian random variable by Hoeffding inequality.

Using bound on the maximum of a finite number of sub-Gaussian random variables (Lecture 13, Lemma
3), we obtain

n

[E sup ‘ Z €igo(@i)| S
i=1

nlog(n + 1).

Combining pieces, we obtain the following upper bound on the expectation:

logn

E(9) - F(G)’ <

0cR n

We can further use the Bounded Difference Inequality (Lecture 14, Theorem 4) to prove concentration
around the expectation. Together, we obtain the following theorem:

Theorem 2. With probability at least 1 — 67"52,

- 1
sup | F'(6) —F(G)‘ <4/ L)
6eR n

Hence supyeg | F(0) — F(8)] £ 0.



Remark: We can remove the y/logn factor using Dudley’s integral bound and VC-dimension.
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