
CS 839 Probability and Learning in High Dimension Lecture 16–17 - 03/30, 04/04/2022

Lecture 16–17 : Non-parametric Least Squares
Lecturer: Yudong Chen Scribe: Chenyang Jiang, Dekun Zhou

In this lecture,1 we will introduce the problem setting and examples of non-parametric least squares. We
will also focus on bounding the denoised error.

1 Recap

In the previous lecture, we shows that when we compute an estimator using ERM, the test error can be
bound by the sum of two terms: the approximation error, which is the best function in your function class
that minimizes the test error, and the generalization gap, which can be further upper bounded by some
complexity measure of the function class (iIn the last lecture we consider the Rademacher complexity).

test error ≤ approximation error + Rn(F)

EL(f̂) L(f0) E sup
f∈F

| 1
n

n∑
i=1

ϵif(xi)| (1)

Usually there is a trade-off between these two terms, if the function class is large, then the approximation
error will be smaller, but a large function class will lead to large complexity.

We remark that the test error EL(f̂) involves two expectations. The outer expectation is with respect to

f̂ . This is the expectation with respect to randomness in the training data. On the other hand, recall that
L(f̂) = E(x,y)∼µ[(f̂(x) − y)2]. This is the expectation with respect to a new test data point. We have two
sources of randomness here.

The bound (1) is sometimes not tight. In particular, when we measure the complexity of the function
class, we take the supreme over the entire function class. This is sometimes pretty loose, because what we
really care about is a particular function f̂ in the function class. Today, we will talk about a refinement of
this kind of bound, which involves a more refined notion of complexity measure. In particular, we take the
supreme over functions only in a neighborhood of f∗:

E sup
f∈F

∥f−f∗∥≤δ

∣∣∣ 1
n

n∑
i=1

ϵif(xi)
∣∣∣.

This is called the localized Rademacher complexity.
In many problems, using this localized complexity will give a tighter control on the generalization gap.

The high level intuition is that we expect f̂ to be not too far away from f∗, so we only need to take the
supremum over functions that are close to f∗.

We mention in passing that the above bound may still be insufficient for some more complicated problems
(e.g., modern, overparametrized neural networks). Obtaining good bounds for these problems requires
understanding (explicit/implicit) regularization as well as the optimization aspect. The previous bound in

(1) assumes that we can find the ERM f̂ ; for many problems, solving for f̂ involves a highly nontrivial
optimization problem. For these more challenging problems, we probably cannot separately look at the
approximation error, generalization gap and optimization error. Rather, we would need to jointly study
these three components and understand the interplay between them.

1Reading: Section 13.1 and 13.2 in [Wainwright, 2019].
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2 Setup

In today’s lecture, we consider the following nonparametric least square problem. Suppose we observe (xi, yi),
i = 1, 2..., n, where yi = f∗(xi) + σwi. Here:

1. f∗ is the unknown ground-truth regression function.

2. xi ∈ X is feature/covariate vector;

3. yi ∈ R: is the response;

4. wi
i.i.d∼ N(0, 1) is the additive noise;

5. σ2 is the noise variance

The setting is almost the same as in the previous lecture, with the only difference that we have noise wi,
whose magnitude is control by the noise variance σ2.

To estimate the unknown regression function f∗, we consider the empirical risk minimizer (ERM), which
is given by

f̂ = argmin
f∈F

1

n

n∑
i=1

(f(xi)− yi)
2. (2)

2.1 Examples

We discuss some concrete examples of the above problem with different choices of the function class F .

2.1.1 Linear Regression

Consider the function class
FC = {x 7→ ⟨θ, x⟩ : θ ∈ C ⊆ Rd}.

Here the regression vector θ takes on values from the set C.

• If we take C = {θ ∈ Rd : ∥θ∥2 ≤ R}, then the ERM problem (2) becomes Ridge Regression, which
constrains the ℓ2-norm of θ.

• More generally, we may take C = {θ ∈ Rd :
∑d

j=1 |θj |q ≤ Rq}, where 0 ≤ q ≤ 2 and Rq is a given
number. This is called ℓq-regression. If q ∈ [1, 2], then the set C is convex and corresponds to the ball

of the ℓq norm. If q ∈ (0, 1], then the sec C is non-convex. When q = 0, then
∑d

j=1 |θj |q equals the

number of non-zero coordinate in the vector θ, so C is the set of R0 sparse vectors in Rd. In this case,
the ERM problem (2) becomes the sparse regression problem.

This is an example where F is a parametric function class that f is defined by a finite dimensional parameter
θ.

In the next few examples, we consider non-parametric function classes.

2.1.2 Lipschitz Regression

Consider the function class

FLip(L) = {f : [0, 1] 7→ R, f(0) = 0, f is L-Lipschitz}.

This is a non-parametric function class. With this function class, the ERM (2) problem appears to be an

infinite dimensional optimization problem. It turns out that an optimal solution f̂ for this problem can be
taken to be a piece-wise linear function.
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2.1.3 Convex Regression

Consider the function class
Fconv = {f : f is convex on Rd}.

With this function class, the apparently infinite-dimensional optimization problem (2) can be converted to
a finite dimension problem as follows.

Step 1: Solve the following Quadratic Program (QP)

min
{ŷi,ĝi}n

i=1∈R×Rd

1

n

n∑
i=1

(yi − ŷi)
2 s.t. ŷj ≥ ŷi + ⟨ĝi, xj − xi⟩ ∀i, j.

One can interpret the optimization variables above as follows: ŷi = f̂(xi) and ĝi is similar to ∇f̂(xi). In the
above QP, we try to minimize the squared error for fitting the training data, subject to constraint that the
function values must come from a convex function.

Step 2: Given the solution {ŷi, ĝi}ni=1 obtained above, we define the function f̂ over the entire domain
via interpolation: for each x, set

f̂(x) = max
i=1,2...n

{ŷi + ⟨ĝi, x− xi⟩}.

Note that if we evaluate the function at the data point xi, the function value satisfies f̂(xi) = ŷi.

2.1.4 Cubic Smoothing Splines

Consider the function class

F(R) =

{
f : [0, 1] 7→ R,

∫ 1

0

(f ′′(x))2 dx ≤ R

}
.

The constraint on integral of second derivative encourages the function to be smooth, so this is a form of
smoothness constraint.

With this function class, one can show that an optimal solution of the ERM problem (2) can be taken
to be a natural cubic spline, which is a piecewise cubic polynomial function, where different pieces are
connected in a smooth way (i.e., the adjacent pieces have matching function value and first two derivatives
at the connection point).

3 Error Bounds

In this section, we establish general error bounds for the ERM f̂ for the non-parametric least-squares
problems.

3.1 Notations and Assumptions

Define the shifted function class as follow:

F∗ := F − f∗ = {f − f∗ : f ∈ F}.

We assume that F∗ is star-shaped, meaning that

∀h ∈ F∗, ∀α ∈ [0, 1] : αh ∈ F∗.

If F∗ is star-shaped, we must have 0 ∈ F∗, which is equivalent to f∗ ∈ F . One observation is that if the
function class F∗ is convex, then it is star-shaped. The converse is not true in general.
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Recall that (xi, yi), i = 1, . . . , n are the data points, where yi = f∗(xi) + σwi. In the sequel, we consider
the feature vectors xi, i = 1, . . . , n as fixed (this is called the fixed design setting). In this case, the only
randomness comes from noise wi. For a function g, define the empirical ℓ2 norm as

∥g∥2n :=
1

n

n∑
i=1

(g(xi))
2

Our goal is to control the following quantity

∥f̂ − f∗∥2n =
1

n

n∑
i=1

(
f̂(xi)− f∗(xi)

)2
.

Note that this quantity can be viewed as a denoised version of training error. (If we replace f∗(xi) above by
yi, then the quantity becomes the training error.)

Remark Using techniques from last lecture, we can bound the difference between the denoised training
error and the test error Ex∼µ(f̂(x)− f∗(x))2, which is what we ultimately care about. Today we will focus
on bounding the denoised training error.

3.2 Localized Gaussian Complexity

For a given radius parameter δ > 0. define localized Gaussian complexity of F∗ as follow:

Gn(δ;F∗) := Ew

[
sup

g∈F∗ ∥g∥n≤δ

∣∣∣∣∣ 1n
n∑

i=1

wig(xi)

∣∣∣∣∣
]
,

where wi
i.i.d∼ N(0, 1).

Define critical radius as follow:

δ∗ := min
δ>0

{
δ :

Gn(δ;F∗)

δ
≤ δ

2σ

}
.

We will later show that δ∗ provides an upper bound for the denoised training error. Before doing so, we first
show that δ∗ is well-defined.

Lemma 1. If F∗ is star-shaped, then the function δ 7→ Gn(δ;F∗)
δ is non-increasing on (0,∞). Hence δ∗

exists and is finite.

Proof For any 0 < δ < t, we want to show that Gn(t,F∗)
t ≤ Gn(δ;F∗)

δ .

Given h ∈ F∗ with ∥h∥n ≤ t, define the rescaled function h̃ = δ
th. We have h̃ ∈ F∗ by definition with

∥h∥n ≤ δ. It is easy to see that

1

n

(
δ

t

n∑
i=1

wih(xi)

)
=

1

n

n∑
i=1

wih̃(xi).

Taking the supreme and expectation on both side over h, we obtain that

δ

t
E

[
sup

h∈F∗:∥h∥n≤t

1

n

n∑
i=1

wih(xi)

]
≤ E

[
sup

h̃∈F∗:∥h̃∥n≤δ

1

n

n∑
i=1

wih̃(xi)

]
.

This is equivalent to desired inequality

Gn(t,F∗)

t
≤ Gn(δ,F∗)

δ
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by definition of the localized Gaussian complexity.

Remark If we take δ = t/2 in the above proof, then Lemma 1 gives

Gn

(
t/2,F∗) ≥ 1

2
Gn(t,F∗).

Therefore, Lemma 1 can be interpreted as saying that when the radius goes to zero, the localized Gaussian
complexity decays more slowly than (or as slow as) linear.

3.3 Master Error Bound

With the above notations, we are ready to state our main theorem, which bounds the error ∥f̂ − f∗∥2n in
terms of the critical radius of the localized Gaussian complexity.

Theorem 1. Suppose F∗ is star-shaped and δ∗ is defined above. For each t ≥ δ∗, with probability at least
1− exp

(
− ntδ∗

2δ2

)
, it holds that

∥f̂ − f∗∥2n ≤ 16tδ∗.

In the above theorem, one usually takes the smallest possible t, which is δ∗. In this case, we have

∥f̂ − f∗∥2n ≤ 16δ∗2. One thing we need to check is that the probability 1− e
−ntδ∗

2δ2 is indeed close to 1.

The proof of Theorem 1 depends on the following lemma:

Lemma 2. For each u ≥ δ∗, define the following “bad” event A(u) as follows:

A(u) :=

{
∃g ∈ F∗ ∩ {∥g∥n ≥ u} :

∣∣∣∣∣σn
n∑

i=1

wig(xi)

∣∣∣∣∣ ≥ 2∥g∥nu

}
.

Then, P(A(u)) ≤ exp{−nu2/(2σ2)}.

The proof of this lemma makes use of several techniques we learned in the previous lectures.

Proof of Lemma 2 We see that

P(A(u)) = P

(
sup

g∈F∗,∥g∥n≥u

1

∥g∥n

∣∣∣∣∣σn
n∑

i=1

wig(xi)

∣∣∣∣∣ ≥ 2u

)
≤ P

(
sup

g∈F∗,∥g∥n=u

∣∣∣∣∣σn
n∑

i=1

wig(xi)

∣∣∣∣∣ ≥ 2u2

)
,

where the inequality is due to the fact that we further restrict to ∥g∥n = u. Define the random variable
Z(u) := supg∈F∗,∥g∥n=u |σn

∑n
i=1 wig(xi)|. We upper bound the probability of the event {Z(u) ≥ 2u2} as

follows:

• (Concentration) We observe that Z(u) is a Lipschitz function of w1, · · · , wn, with Lipschitz constant
upper bounded by σ

n sup∥g∥n=u ∥(g(x1), · · · , g(xn))∥2 = σ
n · u

√
n = σu√

n
. Hence, by Gaussian Lipschitz

concentration inequality in Lecture 12, we obtain that

P(Z(u) ≥ EZ(u) + u2) ≤ exp{−u4n/(2σ2u2)} = exp{−nu2/(2σ2)}.

• (Expectation) By definition of Gn(δ;F∗), we see that

EZ(u)
(i)

≤ σGn(u;F∗) = σu · Gn(u;F∗)

u

(ii)

≤ σu · Gn(δ
∗;F∗)

δ∗

(iii)

≤ σu · δ
∗

2σ
≤ uδ∗,

where inequality (i) is due to the fact that we constrain on ∥g∥n = u in the definition of Z(u), but

∥g∥n ≥ u in the definition of Gn(u;F∗), inequality (ii) holds since u ≥ δ∗ and δ 7→ Gn(δ;F∗)
δ is a

non-increasing function, and inequality (iii) follows from the definition of δ∗.

5



Combining these two steps, we obtain that

P(Z(u) ≥ u2 + u2) ≤ P(Z(u) ≥ uδ∗ + u2)

= P(Z(u)− EZ(u) + EZ(u) ≥ u2 + uδ∗)

≤ P(Z(u)− EZ(u) ≥ u2)

≤ exp{−nu2/(2σ2)}

as claimed.

Now we are ready to prove Theorem 1.

Proof of Theorem 1: Since f̂ is optimal to the ERM problem (2) and f∗ ∈ F is feasible, we have

1

n

n∑
i=1

(yi − f̂(xi))
2 ≤ 1

n

n∑
i=1

(yi − f∗(xi))
2. (3)

Also recall that
yi = f∗(xi) + σwi, 1 ≤ i ≤ n.

We plug this expression into yi’s in equation (3), open the squares and rearrange terms. Doing so gives the
“basic inequality”

1

2
∥f̂ − f∗∥2n ≤ σ

n

n∑
i=1

wi(f̂(xi)− f∗(xi)) (4)

Introducing the shorthand ∆ := f̂ − f∗ ∈ F∗, we rewrite the above basic inequality compactly as

1

2
∥∆∥2n ≤ σ

n

n∑
i=1

wi∆(xi). (5)

Then from Lemma 2, we obtain that for each t ≥ δ∗,

P(A(
√
tδ∗)c) = P

(
∀g ∈ F∗ ∩ {∥g∥n ≥

√
tδ∗} :

∣∣∣∣∣σn
n∑

i=1

wig(xi)

∣∣∣∣∣ ≤ 2∥g∥n
√
tδ∗

)
≥ 1− exp{−ntδ∗/(2σ2)}.

We can then conclude our proof by discussing the magnitude of ∥∆∥n:

1. If ∥∆∥n ≤
√
tδ∗, then we are done because ∥∆∥2n = ∥f̂ − f∗∥2n ≤ tδ∗ < 16tδ∗.

2. Otherwise, if ∥∆∥n >
√
tδ∗, then conditioning on the “good” event A(

√
tδ∗)c, we see that∣∣∣∣∣σn

n∑
i=1

wi∆(xi)

∣∣∣∣∣ ≤ 2∥∆∥n
√
tδ∗.

Combining with basic inequality (5) proves that ∥∆∥2n ≤ 16tδ∗.

We briefly explain why the localized Gaussian complexity provides tighter bounds. The simplest way to
bound the last RHS of the basic inequality (4) is by using a worst case bound that involves the supremum
over the entire function class F∗:

σ

n

n∑
i=1

wi(f̂(xi)− f∗(xi)) ≤ σ sup
g∈F∗

1

n

n∑
i=1

wig(xi).
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Taking the expectation of the RHS gives the (global) Gaussian complexity. This is, however, not tight. What

we really care about is the ERM f̂ . We expect that f̂ is be close to f∗, so we only need to take supreme over
a smaller ball that contains f̂ . The proof of Theorem 1 essentially establishes that for any δ that satisfies
Gn(δ;F)

δ ≤ δ
2σ , the radius-δ ball centered at f∗ is large enough to contain f̂ . The critical radius δ∗ is the

smallest radius of such a ball, so we use δ∗ to get the best bound.

3.4 Controlling the Critical Radius

In this subsection, we provide a way to upper bound the critical radius δ∗. For simplicity, we define a ball
in F∗ and its covering number, both with respect to ∥ · ∥n:

Definition 1. Bn(δ) := {h ∈ F∗ : ∥h∥n ≤ δ}.

Definition 2. The covering number of Bn(δ) with accuracy t and metric ∥ · ∥n is denoted as Nδ(t) :=
N(t, Bn(δ), ∥ · ∥n).

The following theorem translates the problem of bounding δ∗ into that of controlling the covering num-
ber/metric entropy.

Theorem 2. If F∗ is star-shaped, and δ ∈ (0, σ] satisfies the following condition:

16√
n

∫ δ

δ2

4σ

√
logNδ(t) dt ≤

δ2

4σ
, (6)

then we have δ∗ ≤ δ.

Proof Fix a δ ∈ (0, σ] that satisfies (6). Note that δ2

4σ < δ for all δ ∈ (0, σ]. Let {g1, · · · , gM} be a minimal
δ2

4σ -covering of Bn(δ). Therefore, for any g ∈ Bn(δ), there exists some j ∈ [M ] such that ∥gj − g∥n ≤ δ2

4σ .
Introduce that shorthand g(xn

1 ) := (g(x1), . . . , g(xn)) ∈ Rn. We have∣∣∣∣∣ 1n
n∑

i=1

wig(xi)

∣∣∣∣∣ = ∣∣∣ 1n ⟨w, g(xn
1 )⟩
∣∣∣

≤
∣∣∣ 1
n
⟨w, gj(xn

1 )⟩
∣∣∣+ ∣∣∣ 1

n
⟨w, g(xn

1 )− gj(xn
1 )⟩
∣∣∣

≤ max
j∈[M ]

∣∣∣ 1
n
⟨w, gj(xn

1 )⟩
∣∣∣+√∥w∥22

n
·
√

∥g(xn
1 )− gj(xn

1 )∥22
n

≤ max
j∈[M ]

∣∣∣ 1
n
⟨w, gj(xn

1 )⟩
∣∣∣+ ∥w∥2√

n
· δ

2

4σ
. (7)

Next, we upper bound the expectation in the first RHS term by using Dudley’s integral bound with a
slightly smarter look at the bounds we previously had. Define the random variable

Z(gj) :=
1√
n

n∑
i=1

wig
j(xi)

for j ∈ [M ]. Note that Z(gj) is zero-mean and sub-Gaussian with metric ρ(gj , gk) = ∥gj − gk∥n. Since

{g1, · · · , gM} is a minimal δ2

4σ -covering of Bn(δ), we do not need to extend the chaining to smaller than a

resolution of δ2

4σ , as at that resolution we can uniquely identify each point. Furthermore, we also only need
to start the chaining at a resolution of δ, as the set Bn(δ) has a diameter of 2δ. Combining all these and
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working through the arithmetic of the chaining argument, we get that, for every δ ∈ (0, σ] satisfying (6),

E max
j∈[M ]

∣∣∣ 1
n
⟨w, gj(xn

1 )⟩
∣∣∣ = E max

j∈[M ]

∣∣∣∣Z(gj)√
n

∣∣∣∣
≤ 16√

n

∫ δ

δ2

4σ

√
logNδ(t)dt (8)

≤ δ2

4σ
, (9)

where for the first inequality we used a version of Dudley’s integral bound that includes explicit constants,
and in the last inequality we used the assumption (6). Combining with the inequality (7), we obtain

Gn(δ;F∗) = E sup
g∈F∗,∥g∥n≤δ

∣∣∣∣∣ 1n
n∑

i=1

wig(xi)

∣∣∣∣∣
≤ E max

j∈[M ]

∣∣∣ 1
n
⟨w, gj(xn

1 )⟩
∣∣∣+ E

∥w∥2√
n

· δ
2

4σ

≤ δ2

4σ
+

δ2

4σ
=

δ2

2σ
,

where the last inequality follows from (9) and the fact that E ∥w∥2 ≤
√

E ∥w∥22 =
√
n. Since δ∗ is the

smallest δ that satisfies the above inequality, we obtain that δ∗ ≤ δ.

Remark In this remark we point out that, for the term Emaxj∈[M ] | 1n ⟨w, g
j(xn

1 )⟩|, Gaussian maxima
bound is worse than the Dudley’s integral bound. Indeed, from Gaussian maxima, we obtain that

E max
j∈[M ]

∣∣∣ 1
n
⟨w, gj(xn

1 )⟩
∣∣∣ ≲ δ√

n

√
logNδ

( δ2
4σ

)
,

where we use the fact that for each j ∈ [M ], the random variable ⟨w, gj(xn
1 )⟩ is Gaussian with variance upper

bounded by n∥gj∥2n ≤ nδ2. The above bound is worse than the bound (8) obtained using Dudley’s integral,
as illustrated in Figure 1.

Figure 1: Illustration of Gaussian maxima bound versus Dudley’s integral bound. The shaded area in red represents

the Dudley integral bound, while the area of the rectangle defined by the t-axis, y-axis, y =
√

logNδ(
δ2

4σ
) and t = δ

represents the Gaussian maxima bound.

Combining Theorem 1 and Theorem 2, we obtain the following corollary:
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Corollary 1. Suppose that F∗ is star-shaped, and δ ∈ (0, σ) satisfies

1√
n

∫ δ

δ2

4σ

√
logNδ(t) dt ≲

δ2

σ
.

Then for each t ≥ δ, we have ∥f̂ − f∗∥2n ≤ tδ with probability at least 1− exp{−ntδ/(2σ2)}.

4 Applications

We look at several concrete applications of the above bounds.

4.1 Linear Regression (n ≥ d)

As a warm-up, we start by considering the classic linear regression case, where the data points are generated
from the ground-truth model

yi = f⋆(xi) + wi = ⟨θ∗, xi⟩+ wi, i = 1, . . . , n,

This model can be written compactly in vector form as

y = Xθ∗ + w,

where y ∈ Rn, X ∈ Rn×d, θ∗ ∈ Rd and w ∈ Rn. We assume that n ≥ d. Consider the class of linear functions
on Rd:

F = {fθ(·) = ⟨θ, ·⟩ : θ ∈ Rd}.

Clearly F = F⋆ is convex and star-shaped. We also have that Bn(δ) is isomorphic to the ball{
Xθ :

∥Xθ∥2√
n

≤ δ, θ ∈ Rd

}
⊂ range(X),

where range(X) has dimension at most d. So

logNδ(s) ≤ logN(s,Bd
2 (δ), ∥·∥2)) ≤ d log

(
1 +

2δ

s

)
.

Hence

1√
n

∫ δ

0

√
logNδ(s) ds ≤

√
d

n

∫ δ

0

√
log

(
1 +

2δ

s

)
ds

≲ δ

√
d

n

≤ δ2 for δ =

√
d

n
.

By Corollary 1 we get ∥∥∥f̂ − f⋆
∥∥∥2
n
=

1

n

∥∥∥X(θ̂ − θ⋆)
∥∥∥2
n
≲ δ2 =

d

n

with probability ≥ 1− e−d/2. This bound is minimax optimal.
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4.2 High-dimensional ℓq regression

We next consider an extension of the above setting, namely high-dimensional ℓq regression, where the function
class is

F =
{
fθ(·) = ⟨θ, ·⟩ : θ ∈ Bd

q (R)
}

with

Bd
q (R) :=

θ ∈ Rd :

d∑
j=1

|θj |q ≤ R

 .

Here the dimension d is allowed to be larger than the sample size n.
First consider q = 1 (i.e., ℓ1-constrained linear regression, or Lasso). We have that F⋆ is convex and

star-shaped. Using the same vector notations as in the previous subsection, we assume that the columns of
X are normalized to have ℓ2 norm bounded by

√
n. We can also show that

logNδ(s) ≲ logN(s,Bd
1 (R), ∥·∥2) ≲ R2

(
1

s

)2

log d.

So

1√
n

∫ δ

δ2

4

√
logNδ(s) ds ≲ R

√
log d

n

∫ δ

δ2

4

1

s
ds

= R

√
log d

n
log

4

δ

≲ δ2 for δ2 = R

√
log d

n
.

Hence by Corollary 1 we get
∥∥∥f̂ − f⋆

∥∥∥2
n
≲ R

(
log d
n

)1/2
with high probability. For general q ∈ (0, 1), we can

prove that
∥∥∥f̂ − f⋆

∥∥∥2
n
≲ R

(
log d
n

)1−q/2

, which is minimax optimal.

4.3 Lipschitz Regression

The next class of functions we consider is a subset of Lipschitz functions:

F = {f : [0, 1] → R : f(0) = 0, f is L-Lipschitz} .

We have that logN(ϵ,F , ∥·∥∞) ≲ L
ϵ as proved in Homework 1, and thus

1√
n

∫ δ

0

√
logNδ(s) ds ≤

1√
n

∫ δ

0

√
logN(s,F , ∥·∥∞) ds

≲
1√
n

∫ δ

0

√
L

s
ds

≲

√
Lδ

n

≲ δ2 for δ =

(
L

n

)1/3

.

By Corollary 1 we get
∥∥∥f̂ − f⋆

∥∥∥2
n
≤
(
L
n

)2/3
with high probability, which is minimax optimal.
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The result above can be generalized to higher dimensions. Consider the following class of Lipschitz
functions on the d-dimensional space:

F =
{
f : [0, 1]d → R : f(0) = 0, f is L-Lipschitz

}
.

It can be shown that
∥∥∥f̂ − f⋆

∥∥∥2
n
≤
(
L
n

)2/(2+d)
. Note the exponential dependence on the dimension. This is

an example of the curse of dimensionality.

4.4 Convex Regression

Finally we look at the same set of one-dimensional Lipschitz functions as before but with the additional
assumption of convexity:

F = {f : [0, 1] → R : f(0) = 0, f is 1-Lipschitz and convex}

It can be shown that logN(ϵ,F , ∥·∥∞) ≲
√

1
ϵ . Then, by a similar argument as above we can take

δ =
(
1
n

)2/5
. Corollary 1 we get

∥∥∥f̂ − f⋆
∥∥∥2
n
≲
(
1
n

)4/5
, which is minimax optimal.

Note that this bound is better than the
(
1
n

)2/3
bound for Lipschitz functions. This makes sense because

the additional convexity assumption puts a constraint on the second derivative, whereas Lipschitz-ness just
bounds the first derivative.
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