
CS 839 Probability and Learning in High Dimension Lecture 19–20 - 04/11,13/2022

Lecture 19–20: Sample Complexity of Reinforcement Learning
Lecturer: Yudong Chen Scribe: Mingchen Ma, Xindi Lin

In this two lectures, we introduce three bounds of sample complexity of reinforcement learning with more
and more refinement. We will provide the proof of three bounds and see how we got the improvements.

1 Notation

A quick summary of the notation.

1. MDP: M = (S,A,P, r, γ), where S = |S|, A = |A|, P ∈ RSA×S , r ∈ RSA

2. Value and Q functions: V π(s) = E (
∑∞
t=0 γ

tr(st, at) | s0 = s), Qπ(s, a) = E (
∑∞
t=0 γ

tr(st, at) | s0 = s, a0 = a)

3. Bellman Equation: Qπ = r + γPπQπ

2 Problem Setup

We have a discounted MDP M := (S,A,P, r, γ), where S is the finite state space, A is the finite action
space, P is the unknown transition kernel, r is the reward function, and γ is the discounted factor.

• Let S := |S| and A := |A| denote the cardinalities of the state and action spaces, respectively.

• We assume bounded reward, i.e., ∀s, a : r(s, a) ∈ [0, 1]. This implies that ∀s : V π(s) ∈ [0, 1/(1− γ)].

• We may view P as a matrix in RSA×S and r as a vector in RSA.

• A γ-discounted MDP is equivalent to a finite horizon MDP with a random horizon H ∼ Geometric(1−
γ). Therefore, E[H] = 1

1−γ is called the effective horizon.

Since P is unknown, we assume we have a generative model (a.k.a. sampling oracle, simulator). That
is to say, we assume there is a simulator such that for every given pair s, a, one can sample any number
of next states s′ independently from P(·|s, a). This is a strong assumption, which allows us to isolate the
statistical aspect of RL , ignoring the exploration issues.

Our goal is to study the sample complexity, i.e., how many calls of such a simulator we need to get
an approximate optimal policy of M . We are interested in the dependence of the sample complexity on S,A
and 1

1−γ .

3 Algorithm and Performance Evaluation

We consider a model-based apporach. We use samples from generative model to construct an empirical
estimation P̂ of the true transition kernel , then compute the corresponding optimal value function/policy

of P̂, say using the Value Iteration algorithm mentioned in last lecture. Specifically:
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3.1 Algorithm

1. For each (s, a), call the simulator N times; transition to s′ for N(s′|s, a) times. The total number of
calls is N̄ = NSA.

2. We compute the empirical transition probability P̂ : S ×A → ∆(S)

P̂(s′|s, a) :=
N(s′|s, a)

N
.

This gives a new MDP M̂ := (S,A, P̂, r, γ).

3. Based on the empirical MDP, we define the following quantities:

• V̂ π, Q̂π : the value function and Q-value function of a policy π evaluated under M̂ .

• π̂∗ : the optimal policy of M̂ .

• V̂ ∗, Q̂∗ : the value function, Q-value function of the optiaml policy π̂∗ evaluated under M̂ .

Also recall that Q∗ is the Q-function of the optimal policy of the true MDP M .

3.2 Performance Metrics

We are interested in two quantities.

• (Value estimation) How good is Q̂∗? That is, how large should N̄ be to achieve∥∥Q̂∗ −Q∗∥∥∞ ≤ ε.
Here, Q̂∗ = Q̂π̂

∗
is the Q-value of the optimal policy π̂∗ to M̂ evaluated under M̂ , while Q∗ is the

Q-value of the optimal policy of M evaluated under M .

• (Policy performance) How good is π̂∗? That is, how large should N̄ be to achieve∥∥∥Qπ̂∗ −Q∗∥∥∥
∞
≤ ε.

Here, Qπ̂
∗

is the Q-value of the optimal policy π̂∗ to M̂ evaluated under the true MDP M . We want
to study if π̂∗ is actually a good policy for the true MDP.

We will establish three bounds for N̄ , each being tighter than the previous one, that guarantee achieve-
ment of the above goals:

• Naive bound:

N̄ ≥ 1

(1− γ)4
S2A

ε2
.

• Sublinear bound:

N̄ ≥ 1

(1− γ)4
SA

ε2
.

• Optimal bound:

N̄ ≥ 1

(1− γ)3
SA

ε2
.

Note that the algorithm is the same: the model-based approach. We get better bound using more refined
analysis.
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4 Naive Bound

Theorem 1 ([AJKS19] Proposition 2.1). Suppose ε ∈ (0, 1
1−γ ) and δ ∈ (0, 1). If we obtain

N̄ = NSA ≥ cγ

(1− γ)4
S2A log(cSA/δ)

ε2

samples from the simulator, then with probability at least 1− δ:

• (Model accuracy): maxs,a

∥∥∥P(·|s, a)− P̂(·|s, a)
∥∥∥
1
≤ (1− γ)2ε.

• (Uniform value accuracy): for all policies π,
∥∥∥Qπ − Q̂π∥∥∥

∞
≤ ε.

• (Policy near-optimality): for the optimal policy π̂∗ of M̂ :∥∥∥Q̂∗ −Q∗∥∥∥
∞
≤ ε,

∥∥∥Qπ̂∗ −Q∗∥∥∥
∞
≤ 2ε.

4.1 Technical Lemma for Proving Theorem 1

Lemma 1 below can be used to control the error of the model estimate P̂ w.r.t. the true model P. Below one
should think of q = P(·|s, a).

Lemma 1 (Concentration; [AJKS19] Proposition A.8). Let q be a discrete distribution on {1, . . . , S}. Write

q as a vector in RS with qj = Pr [Z1 = j]. Let Z1, . . . , ZN
iid∼ q. Define the empirical distribution q̂ ∈ RS as

q̂j =
∑N
i=1

1{Zi=j)
N . For any ε > 0, we have

Pr
[
‖q̂ − q‖1 ≥

√
S
(

1√
N

+ ε
)]
≤ Pr

[
‖q̂ − q‖2 ≥

1√
N

+ ε

]
≤ e−Nε

2

.

Proof Here, we give a sketch of the proof.
Step 1: The function (Z1, . . . , ZN ) → ‖q̂ − q‖2 satisfies bounded differences property with parameter

O(1/N). By McDiarmids inequality, we can get

Pr [‖q̂ − q‖2 − E ‖q̂ − q‖2 ≥ ε] ≤ e
−Nε2 .

Step 2: Using Jensen’s inequality we can show E ‖q̂ − q‖2 = O(1/
√
N). Combining the two bounds, we

can prove the statement. For complete proof see, e.g., [HKZ12], Proposition 19.

Next, we want to control the error of the evaluating a policy under two MDPs. One additional piece of
notation: For a given stochastic policy π, define the (row-stochastic) matrix Pπ ∈ RSA×SA by

Pπ(s,a),(s′,a′) = P(s′|s, a)π(a′|s′).

This matrix Pπ is the probability transition matrix over state-action pairs, where Pπ(s,a),(s′,a′) is the probability

of transitioning from (s, a) to (s′, a′) under the policy π.

Lemma 2 (Simulation Lemma; [AJKS19] Lemma 2.2). For all π, Qπ − Q̂π = γ
(
I − γP̂π

)−1 (
P− P̂

)
V π.
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Proof From Bellman equation for Q-functions:

Qπ = r + γPπQπ, equivalently, Qπ = (I − γPπ)
−1
r. (1)

Here I − γPπ is invertible because eigenvalues of Pπ are bounded by 1 (Perron-Frobenius) and γ < 1. So

Qπ − Q̂π = Qπ −
(
I − γP̂π

)−1
r

=
(
I − γP̂π

)−1 [(
I − γP̂π

)
− (I − γPπ)

]
Qπ

= γ
(
I − γP̂π

)−1(Pπ − P̂π
)
Qπ = γ

(
I − γP̂π

)−1(P− P̂
)
V π.

Here, the second equation follows by Bellman equation.

The matrix (I − γPπ)
−1

plays an important role in MDPs. We have the following lemma on the `∞
operator norm of this matirx.

Lemma 3 (Operator Norm Lemma; [AJKS19] Lemma 2.3). For all π and v ∈ RSA,
∥∥(I − γPπ)−1v

∥∥
∞ ≤

1
1−γ ‖v‖∞ . That is, ‖(I − γPπ)−1‖`∞→`∞ ≤ 1

1−γ .

Proof Let w := (I − γPπ)
−1
v. Then

‖v‖∞ = ‖(I − γPπ)w‖∞
≥ ‖w‖∞ − γ ‖P

πw‖∞
≥ ‖w‖∞ − γ ‖w‖∞ ,

where last step holds since each element of Pπw is a weighted average of w. Rearranging terms proves the
lemma.

4.2 Proof of Theorem 1

• Model accuracy:

We first fix a pair (s, a). By Lemma 1, we have

P
(∥∥∥P(·|s, a)− P̂(·|s, a)

∥∥∥
1
≥
√
S

(
1√
N

+ ε

))
≤ e−Nε

2

.

By union bound, we get

P
(
∃(s, a) :

∥∥∥P(·|s, a)− P̂(·|s, a)
∥∥∥
1
≥
√
S

(
1√
N

+ ε

))
≤ SAe−Nε

2

.

By choosing N = cγ
(1−γ)4

S log(cSA/δ)
ε2 , we get

P
(
∀(s, a) :

∥∥∥P(·|s, a)− P̂(·|s, a)
∥∥∥
1
≤ (1− γ)2ε

)
≥ 1− δ.

This proves the model accuracy.
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• Value accuracy: Applying Lemma 2 (simulation) and Lemma 3 (operator norm), we have∥∥∥Qπ − Q̂π∥∥∥
∞

=
∥∥∥γ(I − γP̂π)−1(P− P̂)V π

∥∥∥
∞
≤ γ

1− γ

∥∥∥(P− P̂)V π
∥∥∥
∞

≤ γ

1− γ

(
max
s,a

∥∥∥P(·|s, a)− P̂(·|s, a)
∥∥∥
1

)
‖V π‖∞ Holder’s inequality

≤ γ

1− γ
· (1− γ)2ε · 1

1− γ
= γε. Model accuracy bound

• Policy near-optimality, 1st inequality: ∀s, a, we have∣∣∣Q̂∗(s, a)−Q∗(s, a)
∣∣∣ =

∣∣∣∣sup
π
Q̂π(s, a)− sup

π
Qπ(s, a)

∣∣∣∣
≤ sup

π

∣∣∣Q̂π(s, a)−Qπ(s, a)
∣∣∣ ≤ ε.

• Policy near-optimality, 2nd inequality: using triangle inequality and the last two bounds, we have∥∥∥Qπ̂∗ −Q∗∥∥∥
∞
≤
∥∥∥Qπ̂∗ − Q̂π̂∗∥∥∥

∞
+
∥∥∥Q̂π̂∗ −Q∗∥∥∥

∞
≤ ε+ ε.

5 Sublinear Bound

We notice that previous approach estimates every entry of P, and V π for every policy π. What we actually
care about, however, is V ∗ and π∗, for which estimating every entry of P is an overkill. With this observation
in mind, we can improve the sample complexity from S2A to SA.

Theorem 2 ([AJKS19] Proposition 2.4). Define

∆δ,N :=
γ

(1− γ)2

√
2 log(2SA/δ)

N
.

With probability at lest 1− δ,∥∥Q̂∗ −Q∗∥∥∞ ≤ ∆δ,N ,
∥∥Q̂π∗ −Q∗∥∥∞ ≤ ∆δ,N ,

∥∥Qπ̂∗ −Q∗∥∥∞ ≤ 1

1− γ
∆δ,N .

This theorem implies that ‖Q∗ − Q̂∗‖∞ ≤ ε if N̄ & γ2

(1−γ)4
SA log(SA/δ)

ε2 .

5.1 Technical Lemma for Proving Theorem 2

Lemma 4 (Component-wise bounds; [AJKS19] Lemma 2.5 ). We have

Q∗ − Q̂∗ ≤ γ(I − γP̂π
∗
)−1(P− P̂)V ∗,

Q∗ − Q̂∗ ≥ γ(I − γP̂π̂
∗
)−1(P− P̂)V ∗,

where the inequalities above are component-wise vector inequalities.

Proof
1st inequality: By optimality of π̂∗ to M̂ and Simulation Lemma 2, we have

Q∗ − Q̂∗ ≤ Qπ
∗
− Q̂π

∗
= γ

(
I − γP̂π

∗)−1
(P− P̂)V ∗.
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2nd inequality: we have

Q∗ − Q̂∗ = Q∗ −
(
I − γP̂π̂

∗)−1
r by eq. (1)

=
(
I − γP̂π̂

∗)−1 [(
I − γP̂π̂

∗)
−
(
I − γPπ

∗)]
Q∗ by eq. (1)

= γ
(
I − γP̂π̂

∗)−1(Pπ∗ − P̂π̂
∗)
Q∗

≥ γ
(
I − γP̂π̂

∗)−1(Pπ∗ − P̂π
∗)
Q∗

= γ
(
I − γP̂π̂

∗)−1(P− P̂
)
V ∗,

where the inequality follows from P̂π̂∗Q∗ ≤ P̂π∗Q∗ (proved below) and entry-wise non-negativity of
(
I −

γP̂π̂∗
)−1

(proved below).

Proof of P̂π̂∗Q∗ ≤ P̂π∗Q∗: Since π∗(s′) = arg maxaQ
∗(s′, a),∀s′ (π∗ chooses the action a that maximizes

Q∗(s′, a) for every fixed s′), we have

(P̂π
∗
Q∗)s,a =

∑
(s′,a′)

P̂π
∗

(s,a),(s′,a′)Q
∗
(s′,a′)

=
∑

(s′,a′)

P̂(s′ | s, a)π∗(a′ | s′)Q∗(s′,a′)

≥
∑

(s′,a′)

P̂(s′ | s, a)π̂∗(a′ | s′)Q∗(s′,a′)

= (P̂π̂
∗
Q∗)s,a.

Proof that
(
I − γP̂π̂∗

)−1
is entry-wise non-negative: We can expand

(
I − γP̂π̂∗

)−1
using the Neuman

series: [
(1− γ) ·

(
I − γPπ

)−1]
(s,a),(s′,a′)

= (1− γ)

∞∑
t=0

(
γPπ

)t
= (1− γ)

∞∑
t=0

γtPrπ (st = s′, at = a′ | s0 = s, a0 = a) , (2)

which shows that every entry of
(
I − γP̂π̂∗

)−1
is non-negative.

Remark From equation (2), we see that for each (s, a), we have
∑
s′,a′

[
(1−γ)·

(
I−γPπ

)−1]
(s,a),(s′,a′)

= 1.

Therefore,
[
(1− γ) ·

(
I − γPπ

)−1]
(s,a),(·,·) is a probability measure on S ×A, called the occupancy measure.

5.2 Proof of Theorem 2

By Lemmas 2 and 3, we have∥∥∥Q∗ − Q̂π∗∥∥∥
∞

=
∥∥∥γ(I − γP̂π

∗
)−1(P− P̂)V ∗

∥∥∥
∞
≤ γ

1− γ

∥∥∥(P− P̂)V ∗
∥∥∥
∞
.

By Lemmas 4 and 3, we have ∥∥∥Q∗ − Q̂∗∥∥∥
∞
≤ γ

1− γ

∥∥∥(P− P̂)V ∗
∥∥∥
∞
.
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It remains to bound
∥∥∥(P− P̂)V ∗

∥∥∥
∞

. Instead of using Lemma 1, we bound this term by applying Hoeffd-

ing’s inequality and union bound. Doing so gives that with probability at least 1− δ,∥∥∥(P− P̂)V ∗
∥∥∥
∞

= max
s,a

∣∣∣Es′∼P(·|s,a) [V ∗(s′)]− Es′∼P̂(·|s,a) [V ∗(s′)]
∣∣∣

≤ 1

1− γ

√
2 log (2SA/δ)

N
. (3)

Combining the last three display equations proves Theorem 2.

Remark Reason for bound improvement: When we derived the naive bound, we controlled the difference
P− P̂ between two distributions, which has SA2 entries. Here, we instead bound the quantity PV ∗ − P̂V ∗,
which is the difference between the expectation of two distributions and only has SA entries.

In general, estimating a functional (e.g., expectation, variance, entropy) of a distribution is often easier
than estimating the entire distribution. In our proof, we are estimating the expectation under P rather than
the distribution P itself.

6 Optimal Bound

We can further improve the effective horizon factor 1
(1−γ)4 in the sublinear bound (Theorem 2) to 1

(1−γ)3 .

Instead using Hoeffding’s inequality to bound
∥∥∥(P− P̂)V ∗

∥∥∥
∞

. This is done in the following two theorems.

Theorem 3 (Value Accuracy; [AJKS19] Theorem 2.6 ). With probability at least 1− δ,

∥∥∥Q∗ − Q̂∗∥∥∥
∞
≤ γ

√
c

(1− γ)3
log(cSA/δ)

N
+

cγ

(1− γ)3
log(cSA/δ)

N
.

Theorem 4 (Policy performance; [AJKS19] Theorem 2.8 ). For ε ≤
√

1
1−γ , if

N̄ ≥ c

(1− γ)3
SA log(cSA/δ)

ε2
,

then with probability at least 1− δ,
∥∥∥Q∗ − Q̂∗∥∥∥

∞
≤ ε and

∥∥Q∗ −Qπ̂∗∥∥∞ ≤ ε.
Before we prove these two theorems, we compare with the following minimax lower bound on the sample

complexity.

Theorem 5 (Minimax lower bound; [AJKS19] Theorem 2.8). If an algorithm achieves
∥∥Q∗ − Q̂∗∥∥∞ ≤ ε

with probability at least 1− δ, then it must require a total number of samples

N̄ ≥ c

(1− γ)3
SA log(cSA/δ)

ε2
.

This lower bound indicates that the sample complexity bound in Theorem 4 is a minimax optimal. The
proof of Theorem 5 can be found in [AMK12] and [SWW+18].
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6.1 Proof of Theorem 3

Our key idea is to keep track of variance. In particular, we establish the following component-wise bound
by applying scalar Bernstein inequality∣∣∣(P− P̂)V ∗

∣∣∣ component-wise

≤
√

2 log(2SA/δ)

N

√
VarP [V ∗] +O(

1

N
),

where VarP [V ∗] ∈ RSA is the variance vector, defined as

VarP [V ∗] (s, a) := Vars′∼P(·|s,a) [V ∗(s′)] , ∀s, a.

Note that this is a tighter bound than what we used in the proof of Theorem 2, where bound the ‖ · ‖∞
norm of the same quantity using Hoeffding.

Then we combine with the following lemma to bound the variance, thereby completing the proof of
Theorem 3.

Lemma 5 (Weighted variance bound). For any policy π:

∥∥∥(I − γPπ)
−1√

VarP [V π]
∥∥∥
∞
≤

√
2

(1− γ)3
.

6.2 Technical Intuition for Refinement

How would one come up with the above refined proof in the first place? It is not a priori obvious which part
of proof of sublinear bound (Theorem 2) is not tight. It is also non-trivial to realize that keeping track of
the variance is the right way to go. Below we give an informal argument that provides some intuition on
why this is the right way.

Recall that in the proof of Theorem 2, we established the following inequalities:∥∥∥Q∗ − Q̂π∗∥∥∥
∞

=
∥∥∥γ(I − γP̂π

∗
)−1(P− P̂)V ∗

∥∥∥
∞

Simulation Lemma 2

≤ γ

1− γ

∥∥∥(P− P̂)V ∗
∥∥∥
∞

Operator norm Lemma 3 (4)

≤ γ

1− γ
1

1− γ

√
2 log (2SA/δ)

N
Hoeffding (5)

Both (4) and (5) are tight in the worst case; we argue that they cannot be tight simultaneously. Here,

(4) is tight when (P − P̂)V ∗ is proportional to the constant vector 1, which is the top eigenvector of the

row-stochastic matrix (1− γ)(I − γP̂π∗)−1 (see (2)).1

If (P − P̂)V ∗ is a constant vector, then the variance Vars′∼P(·|s,a)[V
∗(s′)] is also constant across (s, a).

In turn, this means the transition probabilities P(·|s, a) does not depend on (s, a), in which case the values
Q∗(s, a) and V ∗(s) are similar across (s, a). Consequently, we must have VarP [V ∗]� 1

1−γ , so the Hoeffding’s

inequality used in (5) is not tight.
The above argument suggests that in order to improve the bound, we should not separate the two steps

(4) and (5).

6.3 Proof of Theorem 4

Theorem 3 controls
∥∥∥Q̂∗ −Q∗∥∥∥

∞
. To translate this to a bound on V ∗ − V π̂∗ , one may be tempted to apply

the the crude bound below.

1For a row-stochastic matrix A with
∑

j Aij = 1, we have A1 = 1).
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Lemma 6 (Q error amplification; Lemma 1.11 in [AJKS19]). Let 1 ∈ RS be the all-one vector. Then

V ∗ − V π̂
∗
≤ 2

1− γ

∥∥∥Q̂∗ −Q∗∥∥∥
∞

1

Applying this lemma gives
∥∥Q∗ −Qπ̂∗∥∥∞ ≤ ‖Q̂∗−Q∗‖∞1−γ , which has a superfluous effective horizon factor

1
1−γ .

To remove 1
1−γ , it turns out that we need a better understanding of the quantity (P− P̂)V̂ ∗. The main

challenge here is the probabilistic dependency between P̂ and V̂ ∗. To address this issue, the key idea is
to use the so-called leave-one-out analysis (which is called absorbing MDP in [AKY20]). Below we sketch
this analysis.

Leave-one-out analysis in the proof of Theorem 4: Fix an arbitrary state s0. We construct a new
empirical MDP M̂0 = (S,A, P̂0, r, γ) that is identical to the original empirical MDP M̂ except that s0 is an
absorbing state. Explicitly,

P̂0(·|s, a) =

{
P̂(·|s, a) s 6= s0

1s0 s = s0

Let V̂ ∗0 be the optimal value function for M̂0.

Remark We note that the new empirical MDP M̂0 is used only in analysis, not in algorithm.

To proceed, our first obervation is that by construction, P̂(·|s0, a) and V̂ ∗0 are independent. Therefore,
using standard concentration inequalities it is easy to bound the quantity[

(P− P̂)V̂ ∗0

]
s0,a

=
∑
s′

(
P(s′|s0, a)− P̂(s′|s0, a)

)
V̂ ∗0 (s′).

Our second observation is that V̂ ∗0 and V̂ ∗ are close, since we only alter one state when constructing M̂0.

Therefore, the above bound on
[
(P− P̂)V̂ ∗0

]
s0,a

implies bound on
[
(P− P̂)V̂ ∗

]
s0,a

, the quantity we want to

control in the first place.
Repeating the above analysis for every s0, we can obtain a tight bound on ‖(P− P̂)V̂ ∗‖∞.

7 Further Reading on Sample Complexity of RL

Model-based approach:

• Optima value bound (Thm 3) is due to [GAMK13]

• Optimal policy bound (Thm 4) is due to [AKY20]

• Lower bound (Thm 5) is due to [AMK12]

• Thm 4 holds for ε ∈
(
0, 1√

1−γ

]
. Improvement to ε ∈

(
0, 1

1−γ
]
: [LWC+20]

Model-free approach:

• Q-learning is sub-optimal, with sample complexity ∝ SA
(1−γ)4 , both in theory and numerically: [Wai19a]

• Q-learning with variance reduction is optimal, with sample complexity ∝ SA
(1−γ)3 : [SWW+18], [Wai19b]
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8 What’s Next

The sample complexity bounds we have established in this lecture are proportional to S and A, the car-
dinalities of the state and action spaces. For problems with large S and A, these bounds would require a
large number of samples. Using function approximation is one way to address this issue. We will study this
approach in the next few lectures.

Below we give a preview of a probabilistic tool that we will use when analyzing function approximation
approaches. Consider the sum

∑k
s=1 φsεs, where εs are i.i.d. Rademacher random variables and φs = 1,∀s.

By Hoeffding bound, we have

|
∑k
s=1 φsεs|√∑k
s=1 φ

2
s

∼
√

log(
1

δ
).

with high probability. It turns out the above bound still holds even when φs are arbitrary i.i.d. random
variables (which may be unbounded and heavy-tailed). This result is called a self-normalized concentration
inequality.

For intuitive understanding, consider the ratio

|
∑k
s=1Xs|√∑k
s=1X

2
s

,

which is the sum of (potentially heavy-tailed) random variables normalized by their squared variation. If the
numerator has a heavy tail, then the denominator will also have a heavy tail. It turns out these two effect
cancel out with each other, so the ratio has a good concentration property.
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