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1 Course Introduction

We Can learn hidden structures, efficiently, from complex noisy data.

A few probabilistic/statistical tools can take us very far.

1.1 What is this course about?

Topic course on the probability and statistical tools for high-dimensional data analysis

• High-dimensional data: It means the data contains many data points, many features or many param-
eters. Sometimes the number of parameters may be much larger than the number of data points.

• We care about information rather than data. The information often exhibits as low-dimensional
structure, for example, linearity, sparsity, low-rank, clusters, manifold.

• Probabilistic analysis. We are interested in Data generated from probabilistic/statistical/generative
models. This is a (strong) assumption, but often worthwhile. In the average case, we have the
performance guarantees. We will compare algorithms and analyze the performance limit.

1.2 Main Themes of This Course

This course may interplay between

• Statistical considerations. In this part, we will consider estimation accuracy, sample size, model
flexibility, and robustness to noise. And we will ask that what can be learned from the data? It is
related to the Information theory.

• Computational considerations. In this part, we will consider fast algorithms (at least poly time)
and low storage/communication cost. And we will ask that what can be learned from the data in 1
hour? It is related to the Optimization theory

Hence, we will emphasize the connections between convex/non-convex optimization, information the-
ory, matrix analysis.

1.3 Tentative Topics

The following topics may be covered by the course.

• Matrix concentration

• Spectral methods

• Convex relaxation methods

• Matrix and tensor estimation

• Randomized linear algebra
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• Nonparametric statistical estimation

• Reinforcement learning and sample complexity Statistical methods based on non-convex optimization

• Information-theoretic lower bounds

• Uniform laws, localization and overparametrization

1.4 Notations Used in This Course

• f(a) . g(a) or f(a) = O(g(a)) means

f(a) 6 Cg(a) ∀a

for a universal positive constant C (say C=128) that is independent of any problem parameter (e.g.,
sample size, dimension, variance, etc.)

• f(a) & g(a) or f(a) = Ω(g(a)) means
f(a) > Cg(a) ∀a

• f(a) � g(a) or f(a) = Θ(g(a)) means

C1g(a) 6 f(a) 6 C2g(a) ∀a

• f(a) = o(g(a)) means

lim
a→∞

∣∣∣∣f(a)

g(a)

∣∣∣∣ = 0

• f(a) = ω(g(a)) means g(a) = o(f(a))

2 Matrix Bernstein, Spectral Algorithm and Matrix Completion

In this section, we will provide an example of the type of problems and techniques studied in this course.
In particular, we will use the Matrix Bernstein Inequality as a probabilistic tool to analyze a Spectral

Algorithm for the Matrix Completion problem. Using this powerful tool, we will show that a simple algorithm
and analysis lead to near-optimal performance guarantees.

2.1 Matrix Bernstein Inequality

The following theorem is a generalization of the standard Bernstein inequality to matrices.

Theorem 1 (Matrix Bernstein Inequality). Suppose X1, ..., Xn ∈ Rd×d are independent, zero-mean,||xi||op 6
b. Here || · ||op is the operator/spectral norm (largest singular value).

max


∥∥∥∥∥∑

i

EXT
i Xi

∥∥∥∥∥
op

,

∥∥∥∥∥∑
i

EXiX
T
i

∥∥∥∥∥
op

 6 σ2

This max · is called ”matrix variance”. Then we have

P


∥∥∥∥∥∑

i

Xi

∥∥∥∥∥
op

> t

 6 2d exp

(
−cmin

{
t2

σ2
,
t

b

})

Remark
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• Note the dimension factor d. It is sometimes sub-optimal, othertimes unavoidable.

• If d = 1, we can have the standard Bernstein’s inequality.

• We will see the proof in the next lecture.

• The parameter c is the universal constant.

2.2 Application: Spectral algorithm for matrix completion

Let Y ∗ ∈ Rd×d be an unknown rank-r matrix. |Y ∗ij 6 1,∀i, j. We observe, independently across i, j,

Yij =

{
Y ∗ij w.p. p

0 w.p. 1− p

Here p is the observation probability and p� 1. Our goal is to estimate Y ∗ given Y .
Note that

E
[

1

p
Yij

]
= p · 1

p
· Y ∗ij + (1− p) · 1

p
· 0 = Y ∗ij

for each (i, j), hence E
[
1
pY
]

= Y ∗.

Our estimator is

Ŷ := best rank-r approximation
1

p
Y

= arg min
z:rank(Z)6r

∥∥∥∥Z − 1

p
Y

∥∥∥∥
F

given by rank-r SVD of
1

p
Y

2.2.1 Analysis of Ŷ

We start with the inequality ∥∥∥Ŷ − Y ∗∥∥∥
op

6

∥∥∥∥Ŷ − 1

p
Y

∥∥∥∥
op

+

∥∥∥∥1

p
Y − Y ∗

∥∥∥∥
op

6 2

∥∥∥∥1

p
Y − Y ∗

∥∥∥∥
op

.

Since Ŷ is the best rank-r approximation, we have

1

d2

∥∥∥Ŷ − Y ∗∥∥∥2
F
6

2r

d2

∥∥∥Ŷ − Y ∗∥∥∥2
op

rank(Ŷ − Y ∗) 6 2r

6
8r

d2

∥∥∥∥1

p
Y − Y ∗

∥∥∥∥2
op

(1)

Note that 1
pY − Y

∗ is a zero-mean random matrix. We can control the last RHS using Matrix Bernstein, as
done in the following lemma.

Lemma 1. We have ∥∥∥∥1

p
Y − Y ∗

∥∥∥∥
op

6 c1

(√
d log d

p
+

log d

p

)
w.p. > 1− 2

nc2

Note here c1,c2 are universal constants
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Proof Write 1
pY − Y

∗ as the sum of independent random matrices:

1

p
Y − Y ∗ =

∑
i,j

X(i,j),

where

X(ij) ,

(
1

p
Y − Y ∗

)
eie

T
j ∈ Rd×d.

Here ei is the i-th standard basis vector Rd. That is, ei = [0, 0, 0, ..., 1, ..., 0], where the element 1 is in the
i-th position.

Observe that

EX(i, j) = 0∥∥∥X(i,j)
∥∥∥
o
p =

∣∣∣∣1pYi,j − Y ∗i,j
∣∣∣∣ 6 1

p
→ b

Moreover, we have

EX(i,j)TX(i,j) = eje
T
j E

[(
1

p
Yij − Y ∗

)2
]

= eje
T
j

(
p(

1

p
− 1)2Y ∗ij

2 + (1− p)Y ∗ij
2

)
(i)

4
1

p
eje

T
j

Here A 4 B means B −A is the positive definite matrix (p.s.d.). The inequality (i) holds since(
p(

1

p
− 1)2Y ∗ij

2 + (1− p)Y ∗ij
2

)
6

1

p

because Y ∗ij ∈ [−1, 1]. It follows that ∑
i,j

EX(i,j)TX(i,j) 4
d

p
Id×d,

whence ∥∥∥EX(i,j)TX(i,j)
∥∥∥
op

6
d

p
→ σ2

and similarly
∥∥∥EX(i,j)X(i,j)T

∥∥∥
op

6
d

p
.

Applying matrix Bernstein (Theorem 1)with above b and σ2, we have

P

(∥∥∥∥1

p
Y − Y ∗

∥∥∥∥
op

> t

)
=P

∥∥∥∥∥∥
∑
i,j

X(i,j)

∥∥∥∥∥∥
op

> t


62d exp

(
−cmin

{
t2

σ2
,
t

b

})
=2d exp

(
−cmin

{
t2p

d
, tp

})
.
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Taking t = c
(√

d log d
p + log d

p

)
, we get

P

(∥∥∥∥1

p
Y − Y ∗

∥∥∥∥
op

> t

)
6

2

d
,

thereby proving Lemma 1.

Combining Lemma 1 with equation (1), we obtain that with high probability, the following error bound
holds:

1

d2

∥∥∥Ŷ − Y ∗∥∥∥2
F
.
r log d

dp
+
r log2 d

d2p2
.

Let us parse the above error bound. Suppose that p = r log d
dε2 , where ε ∈ [0, 1]. Then

1

d2

∥∥∥Ŷ − Y ∗∥∥∥2
F
. ε2 +

ε4

r
6 2ε2

• The observation probabilitiy p can be as small as r log d
d � 1 if r � d.

• Total number of observed entries: pd2 ≈ rd log d� d2. In this case, only a small fraction of the entries
of Y ∗ are observed.

• Expected number of observed entries per column/row is pd ≈ r log d� d

Remark

• The above analysis and error bound can be generalized to the noisy observation setting.

• This error bound is very hard to beat, even with sophisticated algorithms.

• In fact, this bound is un-improvable in noisy setting, up to constant and log factors.

2.3 Research on Matrix Concentration

The matrix Bernstein inequality (Theorem 1) is an example of the so-called matrix concentration inequalities,
which generalize standard concentration inequalities (e.g., Hoeffding, Bernstein, etc.) for scalar random
variables to random matrices.

Matrix concentration is an active field of research, and new results are still combining out at the time of
this course. For example, one latest development is the following:

• ”Universality and sharp matrix concentration inequalities”, by Tatiana Brailovskaya and Ramon van
Handel. https://arxiv.org/abs/2201.05142

• This paper was posted to arXiv on Jan 13, 2022.

• The results therein remove the dimension factor in Theorem 1 under quite general settings. (For the
application in matrix completion problems, there’re other ways to remove this factor.)

• In fact, this paper contains more general results.
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