
CS 839 Probability and Learning in High Dimension Lecture 22 - 04/20/2022

Lecture 22: Linear MDPs II
Lecturer: Yudong Chen Scribe: Ting Cai

In this lecture,1 we recap the structure of Linear MDPs and the episodic setting. We then introduce the
Least-Squares Value Iteration with Upper Confidence Bound (LSVI-UCB) algorithm and the regret bound
for this algorithm. We also discuss the proof of the regret bound.

1 Recap: Linear structure
We assume that both the reward function and transition kernel have a linear structure, with respect to some
known feature map. In the sequel ‖·‖ denotes the `2 norm on Rd.

Assumption 1 (Linearity and Boundedness). For each h ∈ [H] and (x, a, x′) ∈ S ×A× S, it holds that

Ph(x′|x, a) = 〈φ(x, a), µh(x′)〉 and
rh(x, a) = 〈φ(x, a), θh〉 ,

where

• φh : S ×A → Rd is a known feature map,

• µh = (µ
(i)
h)i∈[d] is a vector of d unknown (signed) measures on S, and

• θh = (θ1
h, . . . , θ

d
h) ∈ Rd is a vector of d unknown weights.

We assume that max(x,a)∈S×A ‖φh(x, a)‖ ≤ 1, ‖µh(S)‖ ≤
√
d, ‖θh‖ ≤

√
d for all h ∈ [H].2

The above assumption implies that the Q-function is linear for any policy (including the optimal policy).

Lemma 1 (Linearity of Q). For any policy π and h ∈ [H], there exists a weight vector wπh ∈ Rd such that

Qπh(x, a) = 〈φ(x, a), wπh〉 , ∀(x, a) ∈ S ×A.

In particular, the optimal Q-function satisfies Q∗h(x, a) = 〈φ(x, a), w∗h〉 ,∀x, a for some w∗h ∈ Rd.

2 Episodic setting and regrets
The agent interacts with the MDP in K episodes. At the beginning of episode k, the agent picks a policy
πk = (πk1 , . . . , π

k
H) and receives an (arbitrary) initial state xk1 . The agents then executes the policy for H

steps, resulting in the trajectory
xk1 , a

k
1 , r

k
1 , . . . , x

k
H , a

k
H , r

k
H ,

where akh ∼ πkh(xkh), rkh = r(xkh, a
k
h) and xkh+1 ∼ Ph(·|xkh, akh). The system then resets and episode (k + 1)

begins.
The regret over K episodes is defined as

Regret(K) :=

K∑
k=1

[
V ∗1 (xk1)− V π

k

1 (xk1)
]
,

which is the difference between the total value of the agent’s policy π1, . . . , πK and that of the optimal policy.
We want to find an algorithm that achieves a low regret.

1

Figure 1: Illustration of value functions across episodes. The dashed line represents V ∗
1 (x1), indicating the highest

possible return one can get in each episode. The black solid line represents the value function as the episode k
progresses. The yellow line represents the value function by another possible algorithm, which has higher regret.

Suppose all K episodes start at the same initial state x1. The regret correspond to the shaded area in
Figure 1, which we aim to minimize.

Remark 2. In Figure 1, both algorithms (black curve and yellow curve) eventually converge to the optimal
value when k is sufficiently large. However, the algorithm corresponding to the black curve has smaller regret
during the learning process.

Remark 3. Suppose the (total) regret grows sublinearly, i.e., Regret(K) = o(K). In this case, the average
regret AvgRegret(K) := 1

K

∑K
k=1

[
V ∗1 (xk1)− V πk1 (xk1)

]
= o(1) ultimately goes to 0. For AvgRegret(K), it’s

possible for a few episodes to have very bad value functions, but the effect of the bad episodes won’t matter
as it will eventually average out.

3 Algorithm and guarantees
The algorithm, Least-Squares Value Iteration with Upper Confidence Bound (LSVI-UCB), is given in Algo-
rithm 1.

Algorithm 1 LSVI-UCB
for episode k = 1, 2, . . . ,K do

1. (Value estimation) for step h = H,H − 1, . . . , 1 do
(a) (Gram matrix) Λkh ←

∑
τ∈[k−1] φ(xτh, a

τ
h)φ(xτh, a

τ
h)> + I

(b) (Least squares)

wkh ← arg min
w∈Rd

∑
τ∈[k−1]

[
rh(xτh, a

τ
h) + V kh+1(xτh+1)− 〈w, φ(xτh, a

τ
h)〉
]2

+ ‖w‖2

= (Λkh)−1
∑

τ∈[k−1]

φ(xτh, a
τ
h) ·

[
rh(xτh, a

τ
h) + V kh+1(xτh+1))

]
.

(c) (Q estimate with UCB) Qkh(·, ·) =
〈
wkh, φ(·, ·)

〉
+ β

√
φ(·, ·)>(Λkh)−1φ(·, ·)

(d) (From Q to value function) V kh (·) = maxaQ
k
h(·, a).

2. Receive initial state xk1
3. (Policy execution) for step h = 1, 2, . . . ,H do

Take action akh ← arg maxaQ
k
h(xkh, a); observe reward rkh = rh(xkh, a

k
h) and next state xkh+1.

Below we discuss and provide intuition for the steps in Algorithm 1.
1Reading: [Jin et al., 2019]
2This normalization ensures consistency when reducing to tabular case.

2

3.1 Least squares estimation (Step 1(a)–(b))
Recall that Q∗h(x, a) = 〈φ(x, a), w∗h〉. Our first goal is to estimate the unknown w∗h associated with the
optimal Q∗h. Under the linear assumption, Lemma 1 guarantees that

〈φ(x, a), w∗h〉 = rh(x, a) + (PhV ∗h+1)(x, a).

The next-step value function V ∗h+1 on the RHS is unknown, so we may replace it by V kh+1, which is our
current estimate of the next-step value function. The conditional distribution Ph(x′|x, a) is also unknown,
but we can estimate it using empirical observation of the next state x′ (this is called a one-sample estimate).
Combining, we see that w∗h satisfies the following approximate relationship:

〈φ(x, a), w∗h〉 ≈ rh(x, a) + V kh+1(x′).

Therefore, we can estimate w∗h by finding a vector wkh that minimizes the difference between the LHS and
RHS of the above, over the data from episode 1, · · · , k − 1. That is,

wkh ← arg min
w∈Rd

∑
τ∈[k−1]

[
rh(xτh, a

τ
h) + V kh+1(xτh+1)− 〈w, φ(xτh, a

τ
h)〉
]2

+ ‖w‖2 .

The regularization term ‖w‖2 ensures uniqueness of the solution wkh. The optimal solution of wkh can be
written in a closed-form as shown in step 1(b) in Algorithm 1.

3.2 Value estimation and bonus term (Step 2(c))
Given the estimate wkh, we can calculate Qkh(·, ·) and V kh (·), which are estimates of the true value and Q
functions Q∗h and V ∗h , in Steps 1(c) and 1(d) respectively.

In step 1(c) above, we add a “bonus” term β
√
φ(·, ·)>(Λkh)−1φ(·, ·) that accounts for the uncertainty in

the least square estimate wkh, thereby ensuring that with high probability Qkh(x, a) is an upper confidence
bound (UCB) of the true Q function Q∗h(x, a) for all (x, a). This upper bound is larger for state-action pairs
(x, a) that are infrequently visited in the past, so it encourages exploration of these pairs in Step 3. This
idea, as well as the particular form of the bonus, are a generalization of the UCB algorithm for multi-arm
bandit.

Recall that tabular MDP is a special case of the linear MDP. It is instructive to look at the particular
form of the “bonus” term in the tabular setting. In this setting, d = |S||A| and the feature map φ(s, a) = exa,
which takes 1 at the xa entry and 0 at the other entries. Consequently, the gram matrix

Λkh = I +

k−1∑
τ

exτhaτhe
>
xτha

τ
h
∈ R|S||A|×|S||A|

is a diagonal matrix, where each diagonal entry is

Λkh(xa, xa) = 1 +

k−1∑
τ=1

1{(xτh, aτh) = (x, a)}

= 1 + # of visits to (x, a) pair in step h of episode 1, · · · , k − 1

=: 1 +Nk−1(x, a).

Thus, the bonus term in the tabular case takes the form√
φ(x, a)>(Λkh)−1φ(x, a) =

√
1

1 +Nk−1(x, a)
.

This implies that the fewer visits to the state-action pair (x, a), the larger the “bonus” term for that pair,
which aligns with our initial intention for the “bonus” term.

In the general linear MDP case, we may have two different state-action pairs with similar features
φ(x, a) ≈ φ(x′, a′). In this case, they will have similar “bonus" terms.

3

3.3 Policy Execution (Step 2 & 3)
Given Qkh(·, ·), h ∈ [H] , we can construct the corresponding (deterministic) greedy policy πk = (πkh)h∈[H],
where πkh(x) = arg maxaQ

k
h(x, a). Starting from the initial state xk1 in Step 2, we can then execute the policy

πk to play out episode k, as shown in Step 3.

3.4 Computational complexity
Regarding the computational complexity of Algorithm 1, it cannot be implemented if we naively follow the
steps since when |S| = ∞, we have infinite state-action pairs and it’s impossible to calculate Qkh(·, ·) and
V kh (·) for each pair in each k and h.

A closer inspection of Algorithm 1 shows that we only need to calculate Qkh(x, ·), V kh (x) for the states x
that we actually encounter during the episodes.

4 Regret bound
We establish the following regret bound for LSVI-UCB. Here T := KH is the total number of steps over all
episodes.

Theorem 4. Set β = cdH
√
ι with ι := log(2dT/p). With probability at least 1− p, we have

Regret(K) :=

K∑
k=1

[
V ∗1 (xk1)− V π

k

1 (xk1)
]
.
√
d3H3Tι2 =

√
d3H4Kι2.

Remark 5. We can compare the above regret bound with some known minimax bounds. For tabular MDP,
the minimax regret bound is regret &

√
dH3K. Therefore, the dependence on H in Theorem 4 is off by a

factor of
√
H.

For linear bandit problem where H = 1, the minimax regret bound is regret &
√
d2K. Therefore, the

dependence on d in Theorem 4 is off by a factor of
√
d. We will point out later where this additional d factor

comes from in the proof.

4.0.1 Sample complexity bound

From the regret bound in Theorem 4, we can derive a sample complexity bound for finding an ε-optimal
policy. Algorithm 1 outputs K policies π1, π2, · · · , πK . Among them we can randomly pick a policy:
π̂ ∼ uniform{π1, · · · , πK}. For a given ε > 0, we have

P(V ∗1 (x1)− V π̂1 (x1) ≥ ε) ≤ E[V ∗1 (x1)− V π̂1 (x1)]

ε
(by Markov Inequality)

=
1
K

∑K
k=1[V ∗1 (x1)− V π̂1 (x1)]

ε

≤
1
K

√
d3H4K

ε
(ignore ι in Theorem 4)

=

√
d3H4

Kε

It follows that when K ≥ d3H4

0.12ε , we have P(V ∗1 (x1) − V π̂1 (x1) ≥ ε) ≤ 0.1. This means that with probability
≥ 0.9, π̂ is an ε-optimal policy.
Remark 6. When specialized to the tabular setting where d = |S||A|, the above sample complexity bound
for LSVI-UCB becomes K & |S|3|A|3H4

ε2 . One may compare this bound with the minimax sample complexity
bound we get last week, which reads K & 1

(1−γ)3 ·
|S||A|
ε2 ≈ H3 · |S||A|ε2 , where we treats the effective horizon

1
1−γ as the horizon. We see that the above sample complexity bound for LSVI-UCB is sub-optimal by a
factor of H · |S|2|A|2 not an optimal bound. The additional H factor can be removied by changing the
current “Hoeffding bonus” term to a “Bernstein Bonus” term. It is not clear yet whether the difference in
|S||A| can be removed.

4

5 Proof of Theorem 4
The proof proceeds in 5 steps.

1. Concentration

2. Least-squares estimation error

3. UCB property

4. Regret decomposition

5. Final regret bound

Today we will cover Step 1.
Define the shorthand φτh := φ(xτh, a

τ
h).

5.1 Concentration
We present a concentration result, which is the crucial step of the proof. For a given positive definite matrix
A, define the weighted norm ‖u‖A :=

√
u>Au.

Lemma 7 (Concentration of empirical measure). For each p, the following event E holds with probability at
least 1− p/2:∥∥∥∥∥∥

∑
τ∈[k−1]

φτh

[
V kh+1(xτh+1)− (PhV kh+1)(xτh, a

τ
h)
]∥∥∥∥∥∥

(Λkh)−1

. dH
√

log(dT/p), ∀k, h.

Roughly speaking, this lemma says that the empirical sum
∑
τ φ

τ
h · V (xτh+1) approximates the true ex-

pectation
∑
τ φ

τ
h · (PhV)(xτh, a

τ
h). The approximation error is measured in the norm ‖·‖(Λkh)−1 weighted by

the Gram matrix Λkh := I +
∑
τ∈[k−1] φ

τ
h(φτh)>, where we recall that φτh = φ(xτh, a

τ
h) are feature vectors of

the previous visited state-action pairs (xτh, a
τ
h). Therefore, we have better approximation in the directions

that are better covered by the previous data. Here we crucially exploit the linear structure: we care about
coverage w.r.t. the feature space rather than w.r.t. individual state-action pairs.

Proof Fix k and h. For each τ ∈ [k], define the sigma-algebra Fτ−1 = σ(x1
1:H , . . . x

τ−1
1:H , x

τ
1 , . . . , x

τ
h), which

includes everything up to step h of episode τ . Note that φτh, x
τ
h ∈ Fτ−1 and xτh+1 ∈ Fτ .

Consider V kh+1 as fixed first. Note that V kh+1(xτh+1) − PhV kh+1(xτh) | Fτ−1 is zero-mean and H-bounded.
Applying the concentration inequality for self-normalized processes (Lemma 10), we obtain that with prob-
ability at least 1− δ:∥∥∥∥∥∥

∑
τ∈[k−1]

φτh

[
V kh+1(xτh+1)− PhV kh+1(xτh, a

τ
h)
]∥∥∥∥∥∥

(Λkh)−1

. H

√
log

(k + 1)d/2

δ
. (1)

Note that the log factor on the RHS comes from the bound detΛkh ≤
(∥∥Λkh

∥∥
op

)d
≤ (k + 1)d.

In reality, V kh+1 is random. By construction and Lemma 9, V kh+1 must lie in the set

V :=
{
V : V (·) = max

a

[
φ(·, a)>w + β

√
φ(·, a)Λ−1φ(·, a)

]
,

w ∈ Rd with ‖w‖ ≤ H
√
dk,Λ ∈ Rd×d with λmin(Λ) ≥ 1.

}
The ε-covering number of V isN ≈

(
H
√
dk
ε

)d (
β
√
d

ε

)d2
, since we need to cover the sets

{
w ∈ Rd : ‖w‖ ≤ H

√
dk
}

and
{
A ∈ Rd×d : A = Λ−1, λmax(A) = λmin(Λ)−1 ≤ 1

}
.

5

Applying (1) with δ = p/2
N and running an ε-net argument to all possible V kh+1 in V, we obtain the desired

inequality.

Note that the d factor on the RHS of the lemma statement comes from
√

logN ≈ d.

Appendices
A Technical lemmas
We begin with a simple upper bound on the Gram matrix.

Lemma 8 (Simple upper bound). If Λt = λI +
∑
i∈[t] φiφ

>
i ∈ Rd and λ > 0, then∑

i∈[t]

φ>i Λ−1
t φi ≤ d.

Proof If λ = 0, then it is easy to see that
∑
i∈[t] φ

>
i Λ−1

t φi = tr(Id) = d. The regularization λ > 0 only
makes the LHS smaller.

The next lemma ensures boundedness of the linear weights.

Lemma 9 (Weights are bounded). (i) For each policy π and its Q function Qπh(x, a) = 〈φ(x, a), wπh〉, we have
‖wπh‖ ≤ 2H

√
d,∀h. (ii) The weights {wkh} in the LSVI-UCB algorithm satisfies

∥∥wkh∥∥ ≤ 2H
√
dk, ∀k, h.

Proof Part (i) follows from Assumption 1 on linearity and boundedness.Part (ii) holds since the Gram
matrix Λkh has minimum eigenvalue ≥ 1 and satisfies the bound in Lemma 8.

Lemma 10 (Concentration for self-normalized processes [Abbasi-Yadkori et al., 2011, Theorem 1]). Suppose
(εs)s=1,2,... is a scalar stochastic process adapted to the filtration (Fs), and εs|Fs−1 is zero mean and σ-sub-
Gaussian. Let (φs)s=1,2,... be an Rd-valued stochastic process with φs ∈ Fs−1. Let Λt = I +

∑t
s=1 φsφ

>
s ∈

Rd×d. Then with probability at least 1− δ, we have∥∥∥∥∥
t∑

s=1

φsεs

∥∥∥∥∥
2

Λ−1
t

≤ 2σ2 log

[
det(Λt)1/2

δ

]
, ∀t ≥ 0.

References
[Abbasi-Yadkori et al., 2011] Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. (2011). Improved algorithms

for linear stochastic bandits. Advances in Neural Information Processing Systems, pages 2312–2320.

[Jin et al., 2019] Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. (2019). Provably efficient reinforcement
learning with linear function approximation.

6

	Lecture 22 – Lecture 22: Linear MDPs II
	Recap: Linear structure
	Episodic setting and regrets
	Algorithm and guarantees
	Least squares estimation (Step 1(a)–(b))
	Value estimation and bonus term (Step 2(c))
	Policy Execution (Step 2 & 3)
	Computational complexity

	Regret bound
	Sample complexity bound

	Proof of Theorem 4
	Concentration

	Technical lemmas

