
CS 839 Probability and Learning in High Dimension Lecture 23 - 04/25/2022

Lecture 23: Linear MDPs III
Lecturer: Yudong Chen Scribe: Peyman Morteza

In this lecture,1 we complete the proof of regret bound for LSVI-UCB and also give a preview of Ran-
domized Numerical Linear Algebra (RandNLA).

1 Recap: LSVI-UCB Algorithm and Regret Bound

Recall the LSVI-UCB algorithm (Algorithm 1) and its regret guarantee (Theorem 1) from previous lecture.

Algorithm 1 LSVI-UCB

for episode k = 1, 2, . . . ,K do
1. (Value estimation) for step h = H,H − 1, . . . , 1 do

(a) (Gram matrix) Λkh ←
∑
τ∈[k−1] φ(xτh, a

τ
h)φ(xτh, a

τ
h)> + I

(b) (Least squares)

wkh ← arg min
w∈Rd

∑
τ∈[k−1]

[
rh(xτh, a

τ
h) + V kh+1(xτh+1)− 〈w, φ(xτh, a

τ
h)〉
]2

+ ‖w‖2

= (Λkh)−1
∑

τ∈[k−1]

φ(xτh, a
τ
h) ·

[
rh(xτh, a

τ
h) + V kh+1(xτh+1))

]
.

(c) (Q estimate with UCB) Qkh(·, ·) =
〈
wkh, φ(·, ·)

〉
+ β

√
φ(·, ·)>(Λkh)−1φ(·, ·)

(d) (From Q to value function) V kh (·) = maxaQ
k
h(·, a).

2. Receive initial state xk1
3. (Policy execution) for step h = 1, 2, . . . ,H do

Take action akh ← arg maxaQ
k
h(xkh, a); observe reward rkh = rh(xkh, a

k
h) and next state xkh+1.

In the following, T := KH is the total number of steps over all episodes.

Theorem 1. Set β = cdH
√
ι with ι := log(2dT/p). With probability at least 1− p, we have

Regret(K) :=

K∑
k=1

[
V ∗1 (xk1)− V π

k

1 (xk1)
]
.
√
d3H3Tι2 =

√
d3H4Kι2.

1.1 Remarks on Model and Algorithms

Before we continue with the proof of Theorem 1, we provide some remark that highlights the insights
underlying the above results.

Remark 1 (Linear Models). A key step and contribution of the above result is identifying the appropriate
linear model for MDPs. One might start by considering the following linear assumption on the transition
kernel,

P(·|s, a) =

d∑
i=1

βiKi(·|s, a),

1Reading: [Jin et al., 2019]

1

where the coefficients βi’s are unknown, and the kernel Ki maps state action pairs to signed measures on S
and is assumed to be known. This model is known as the “linear mixture MDP” model. In comparison, the
“linear MDP” model we have been considering so far assumes that

P(·|s, a) =

d∑
i=1

φi(s, a)µi(·),

where in the above µi’s are signed measures on S and assumed to be unknown and the feature map φ is
assumed to be known. We see that this model is substantially more flexible than the linear mixture MDP
model.

Remark 2 (Bonus in LSVI-UCB). Another key point about LSVI-UCB algorithm is where the bonus term is

added. In Algorithm 1, a bonus term β
√
φT (Λkh)−1φ, is added in Step 1(c) when computing the Qkh function,

which is in turn used to compute the V kh function. Note that V kh (as well as the bonus term it carries) is
then used in computing Qkh−1 and V kh−1 for step h− 1. Therefore, the bonus accumulates across the steps h.
It is tempting to consider the following alternative algorithm (which does NOT work).

Algorithm 2 An Alternative Algorithm That Does NOT Work

for episode k = 1, 2, . . . ,K do
1. (Value estimation) for step h = H,H − 1, . . . , 1 do

(a) (Gram matrix) Λkh ←
∑
τ∈[k−1] φ(xτh, a

τ
h)φ(xτh, a

τ
h)> + I

(b) (Least squares)

wkh = (Λkh)−1
∑

τ∈[k−1]

φ(xτh, a
τ
h) ·

[
rh(xτh, a

τ
h) + V kh+1(xτh+1))

]
.

(c) (Q estimate) Qkh(·, ·) =
〈
wkh, φ(·, ·)

〉
(d) (From Q to value function) V kh (·) = maxaQ

k
h(·, a).

2. Receive initial state xk1
3. (Policy execution with bonus) for step h = 1, 2, . . . ,H do

Take action akh ← arg maxa

{
Qkh(xkh, a) + β

√
φ(xkh, a)>(Λkh)−1φ(xkh, a)

}
Observe reward rkh = rh(xkh, a

k
h) and next state xkh+1.

In Algorithm 2, the bonus is added in step 3 when choosing actions. However, this would result in
insufficient exploration, because it does not consider accumulating the bonus terms.

2 Completing the Proof of Theorem 1

As discussed in the previous lecture, the proof can be divided into 5 main steps:

1. Concentration

2. LS estimation error

3. UCB

4. Regret Decomposition

5. Regret Bound

We completed step 1 in the previous lecture. In this lecture we will complete the remaining steps.
Define the shorthand φτh := φ(xτh, a

τ
h).

2

2.1 Concentration

We recall the following lemma.

Lemma 3 (Concentration of empirical measure). For each p, the following event E holds with probability at
least 1− p/2:∥∥∥∥∥∥

∑
τ∈[k−1]

φτh

[
V kh+1(xτh+1)− (PhV kh+1)(xτh, a

τ
h)
]∥∥∥∥∥∥

(Λk
h)−1

. dH
√

log(dT/p), ∀k, h.

The proof was given in the previous lecture. We provide a remark that highlights intuition for this lemma.

Remark 4. Roughly speaking, this lemma says that the empirical estimate
∑
τ V (xτh+1) approximates the

true expectation
∑
τ (PhV)(xτh, a

τ
h). In fact, the lemma says something more:

• Note the factor φτh := φ(xτh, a
τ
h) that appears in the lemma. This means we have good concentration

not only for expected value (PhV)(xτh, a
τ
h) associated with the visited state-action pair (xτh, a

τ
h), but

also for the direction spanned by the feature vector φτh of this pair. Therefore, the empirical estimate
generalizes to other (unseen) state-action pairs whose feature vectors are similar to φτh.

• The approximation error is weighted by the Gram matrix Λkh := I+
∑
τ∈[k−1] φ

τ
h(φτh)>, where we recall

that φτh = φ(xτh, a
τ
h) are feature vectors of the previous visited state-action pairs (xτh, a

τ
h). Therefore,

we have better approximation in the directions that are better covered by the previous data.

2.2 Least-squares estimation error

We next bound the difference between the algorithm’s value function (without bonus) and the true value
function of any policy π (including π∗), recursively in terms of the step h.

Lemma 5 (Least-squares error bound). If β = dH
√
ι,then on the event E in Lemma 3, we have for all

(x, a, h, k, π): 〈
φ(x, a), wkh

〉
−Qπh(x, a) = Ph(V kh+1 − V πh+1)(x, a) + ∆k

h(x, a),

where ∣∣∆k
h(x, a)

∣∣ ≤ β√φ(x, a)>
(
Λkh
)−1

φ(x, a).

Proof By linearity and Bellman equation we have Qπh(x, a) = 〈φ(x, a), wπh〉 = r(x, a) + (PhV πh+1)(x, a) and

by algorithm specification we have wkh = (Λkh)−1
∑
τ∈[k−1] φ

τ
h ·
[
rh(xτh, a

τ
h) + V kh+1(xτh+1)

]
. We want to bound

the difference in the weights, wkh − wπh . We first use linearity to express wπh as also a least-square solution:

wπh =

 ∑
τ∈[k−1]

φτh

−1 ∑
τ∈[k−1]

φτh ·
[
rh(xτh, a

τ
h) + (PhV πh+1)(xτh, a

τ
h)
]

=
(
Λkh − I

)−1 ∑
τ∈[k−1]

φτh ·
[
rh(xτh, a

τ
h) + (PhV πh+1)(xτh, a

τ
h)
]

Multiplying both sides by
(
Λkh
)−1 (

Λkh − I
)

gives

wπh −
(
Λkh
)−1

wπh =
(
Λkh
)−1 ∑

τ∈[k−1]

φτh ·
[
rh(xτh, a

τ
h) + (PhV πh+1)(xτh, a

τ
h)
]

3

It follows that

wkh − wπh = (Λkh)−1
∑

τ∈[k−1]

φτh ·
[
V kh+1(xτh+1)− (PhV πh+1)(xτh, a

τ
h)
]
−
(
Λkh
)−1

wπh

= (Λkh)−1
∑

τ∈[k−1]

φτh ·
[
V kh+1(xτh+1)− (PhV kh+1)(xτh, a

τ
h)
]

︸ ︷︷ ︸
q2

+ (Λkh)−1
∑

τ∈[k−1]

φτh ·
[
Ph(V kh+1 − V πh+1)(xτh, a

τ
h)
]

︸ ︷︷ ︸
q3

−
(
Λkh
)−1

wπh︸ ︷︷ ︸
q1

.

whence 〈
φ(x, a), wkh

〉
−Qπh(x, a) = 〈φ(x, a), q1 + q2 + q3〉 .

We apply Cauchy-Schwarz to bound each RHS term:

1. First term: we have

〈φ(x, a), q1〉 ≤ ‖wπh‖(Λk
h)−1 · ‖φ(x, a)‖(Λk

h)−1 ≤ ‖wπh‖ · ‖φ(x, a)‖(Λk
h)−1 . H

√
d · ‖φ(x, a)‖(Λk

h)−1

using Λkh � I and ‖wπh‖ . H
√
d.

2. Second term: we have
〈φ(x, a), q2〉 . dH

√
log(dT/p) · ‖φ(x, a)‖(Λk

h)−1

using the last Lemma 3.

3. Third term: letting Φkh =
∑
τ∈[k−1] φ

τ
hφ

τ>
h = Λkh − I and observing that P(·|x, a) = φ(x, a)>µh(·), we

have

〈φ(x, a), q3〉 =
〈
φ(x, a), (Λkh)−1 · Φkh · µh(·)(V kh+1 − V πh+1)

〉
=
〈
φ(x, a), µh(·)(V kh+1 − V πh+1)

〉
+
〈
φ(x, a), (Λkh)−1µh(·)(V kh+1 − V πh+1)

〉
= Ph(V kh+1 − V πh+1)(x, a) +

〈
φ(x, a), (Λkh)−1µh(·)(V kh+1 − V πh+1)

〉
. Ph(V kh+1 − V πh+1)(x, a) + ‖φ(x, a)‖(Λk

h)−1 ·H
√
d/λ

using Λkh � I,‖µh(S)‖ ≤
√
d and V kh+1(·) ≤ H,V πh+1 ≤ H.

Combining, we can derive the desired bound〈
φ(x, a), wkh

〉
−Qπh(x, a) . Ph(V kh+1 − V πh+1)(x, a) + dH ‖φ(x, a)‖(Λk

h)−1

. Ph(V kh+1 − V πh+1)(x, a) + β ‖φ(x, a)‖(Λk
h)−1

under our choice of β = dH
√
ι.

2.3 UCB property

Next, we establish the desired UCB property, i.e., Qkh constructed in the algorithm always upper bounds the
true Q function Q∗h(x, a).

Lemma 6 (UCB). On the event E in Lemma 3, we have Qkh(x, a) ≥ Q∗h(x, a) for all (x, a, k, h).

4

Proof We fix k and perform induction on h. The base case h = H holds since the terminal cost is zero.
For the induction step, we have

Qkh(x, a) :=
〈
wkh, φ(x, a)

〉
+ β

√
φ(x, a)>

(
Λkh
)−1

φ(x, a)︸ ︷︷ ︸
bonus

by construction

= Q∗h(x, a) + Ph(V kh+1 − V ∗h+1)(x, a) + ∆k
h(x, a) + β · bonus Lemma 5 with π=π∗

≥ Q∗h(x, a) + 0 + 0. V kh+1 ≥ V ∗h+1 by induction

2.4 Regret decomposition

Finally, we have the following recursive bound for V kh (xkh)− V πk

h (xkh), the difference between the UCB value
and true values of the agent’s policy πk.

Lemma 7 (Recursive formula). Let δkh := V kh (xkh) − V πk

h (xkh), and ζkh+1 := E
[
δkh+1 | xkh, akh

]
− δkh+1. Then

on the event E in Lemma 3, we have for all (k, h),

δkh︸︷︷︸
error for step h

≤ δkh+1︸︷︷︸
error for step h+1

+ ζkh+1︸︷︷︸
statistical error

+2β
√

(φkh)>(Λkh)−1φkh︸ ︷︷ ︸
UCB bonus

.

Proof By construction we have

δkh = Qkh(xkh, a
k
h)−Qπ

k

h (xkh, a
k
h).

By Lemma 5 we have for all (x, a),

Qkh(x, a)−Qπ
k

h (x, a) ≤ Ph(V kh+1 − V π
k

h+1)(x, a) + ∆k
h(x, a) + β

√
(φkh)>(Λkh)−1φkh︸ ︷︷ ︸

bonus

≤ Ph(V kh+1 − V π
k

h+1)(x, a) + 2 · bonus

Combining, we obtain

δkh ≤ Ph(V kh+1 − V π
k

h+1)(xkh, a
k
h) + 2 · bonus

= E
[
δkh+1 | xkh, akh

]
+ 2 · bonus

= δkh+1 + ζkh+1 + 2 · bonus

as desired.

2.5 Putting together

We are now ready to prove the regret bound O
(√

d3H3Tι2
)

in the main theorem.

5

First, note that the regret is

Regret(K) :=

K∑
k=1

[
V ∗1 (xk1)− V π

k

1 (xk1)
]

definition

≤
K∑
k=1

[
V k1 (xk1)− V π

k

1 (xk1)
]

V k is UC by Lemma 6

=

K∑
k=1

δk1 definition

≤
K∑
k=1

H∑
h=1

ζkh + 2β

K∑
k=1

H∑
h=1

√
(φkh)>(Λkh)−1φkh. Lemma 7

• (This is the concentration part.) For the first term, we know that (ζkh) is a martingale difference
sequence (with respect to both h and k), and

∣∣ζkh∣∣ ≤ H. Hence by Azuma-Hoeffding, we have w.h.p.

K∑
k=1

H∑
h=1

ζkh . H ·
√
KHι = H

√
Tι.

• (This is the real regret part.) For the second term, we apply the elliptical potential Lemma 10 to
obtain

H∑
h=1

K∑
k=1

√
(φkh)>(Λkh)−1φkh ≤

H∑
h=1

√
K

√√√√ K∑
k=1

(φkh)>(Λkh)−1φkh Jensen’s or Cauchy-Schwarz

≤
H∑
h=1

√
K ·

√
2 log

(
detΛKh
detΛ0

h

)
Lemma 10

≤
H∑
h=1

√
K ·

√√√√2 log

(
(1 + kmaxk

∥∥φkh∥∥2
)d

1

)
by construction of Λkh

≤
H∑
h=1

√
K ·

√
2d log

(
1 + k

1

) ∥∥φkh∥∥ ≤ 1,∀h, k by assumption

≤ H
√

2Kdι.

Combining, we obtain
Regret(K) . H

√
Tι+ β ·H

√
2Kdι .

√
d3H3Tι2

by our choice of β � dH
√
ι. This completes the proof of the main theorem.

3 Preview: Randomized Numerical Linear Algebra (RandNLA)

In the next few lectures we will discuss Randomized Numerical Linear Algebra (RandNLA). The goal of
RandNLA is to design randomized algorithms to obtain approximate solution to common linear algebra
problems, hopefully with better computational efficiency than deterministic exact solutions. Probability is
used as tool in both algorithm design and analysis.

We have the following three problems in mind:

6

1. Matrix Multiplication
Given two n×n matrices A and B, we can compute the product AB with O(n3) running time. There
are sub-cubic algorithms such as Strassen algorithm which computes the product with approximately
O(n2.8) running time; however, such algorithms are less common in practice. Can we design randomized
algorithm to approximate AB with efficient computational time? In other words we would like to design
algorithms with efficient running time by finding approximation solutions that are good enough for,
say, machine learning applications.

2. Least Squares Problems
We would like to solve the following problem:

min
x∈Rd

‖Ax− b‖2 ,

where A ∈ Rn×d, b ∈ Rn and n > d. There are two common ways to solve the above problem. First,
noting that the optimal solution satisfies the normal equation

0 = ∇(‖Ax− b‖2)⇐⇒ A>(Ax− b) = 0,

one can solve this linear equation system using Gaussian elimination-type methods in O(nd2) time.
We could also solve the optimization problem using an iterative algorithm like gradient descent,

xt+1 = xt − η∇(‖Axt − b‖2) = xt − ηA>(Axt − b).

Here, each update only involves matrix-vector multiplication and can be done in O(nd) time. To obtain
a solution with accuracy ε, the number of iterations should be roughly proportional to κ(A) log(1

ε),
where κ(A) is the condition number of A. The overall running time would be O(ndκ(A) log(1

ε)). Can
we improve the computational time and approximate the solution by designing randomized algorithms?

3. Low-Rank Approximation
We would like to find a low-rank matrix that approximates a given matrix. We will discuss this problem
in more details in the subsequent lectures.

Appendices

A Technical lemmas

We begin with a simple upper bound on the Gram matrix.

Lemma 8 (Simple upper bound). If Λt = λI +
∑
i∈[t] φiφ

>
i ∈ Rd and λ > 0, then∑

i∈[t]

φ>i Λ−1
t φi ≤ d.

Proof If λ = 0, then it is easy to see that
∑
i∈[t] φ

>
i Λ−1

t φi = tr(Id) = d. The regularization λ > 0 only
makes the LHS smaller.

The next lemma ensures boundedness of the linear weights.

Lemma 9 (Weights are bounded). (i) For each policy π and its Q function Qπh(x, a) = 〈φ(x, a), wπh〉, we have

‖wπh‖ ≤ 2H
√
d,∀h. (ii) The weights {wkh} in the LSVI-UCB algorithm satisfies

∥∥wkh∥∥ ≤ 2H
√
dk, ∀k, h.

7

Proof Part (i) follows from Assumption on the linearity and boundedness. Part (ii) holds since the Gram
matrix Λkh has minimum eigenvalue ≥ 1 and satisfies the bound in Lemma 8.

The analysis of multi-arm bandit frequently makes use of the scalar inequality

log(t+ 1) ≤
∑
j∈[t]

1

j + 1
≤ 2 log(t+ 1).

The next lemma, standard in the linear bandit literature, generalizes the above inequality.

Lemma 10 (Elliptical potential lemma [Jin et al., 2019]). Suppose that ‖φt‖ ≤ 1,∀t, Λ0 ∈ Rd×d is psd, and
Λt = Λ0 +

∑
i∈[t] φiφ

>
i . If λmin(Λ0) ≥ 1, then

log

(
detΛt
detΛ0

)
≤
∑
j∈[t]

φ>j Λ−1
j φj ≤ 2 log

(
detΛt
detΛ0

)
,∀t.

Our last lemma is a powerful concentration inequality.

Lemma 11 (Concentration for self-normalized processes [Abbasi-Yadkori et al., 2011, Theorem 1]). Suppose
(εs)s=1,2,... is a scalar stochastic process adapted to the filtration (Fs), and εs|Fs−1 is zero mean and σ-sub-

Gaussian. Let (φs)s=1,2,... be an Rd-valued stochastic process with φs ∈ Fs−1. Let Λt = I +
∑t
s=1 φsφ

>
s ∈

Rd×d. Then with probability at least 1− δ, we have∥∥∥∥∥
t∑

s=1

φsεs

∥∥∥∥∥
2

Λ−1
t

≤ 2σ2 log

[
det(Λt)

1/2

δ

]
, ∀t ≥ 0.

References

[Abbasi-Yadkori et al., 2011] Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. (2011). Improved algorithms
for linear stochastic bandits. In Advances in Neural Information Processing Systems, pages 2312–2320.

[Jin et al., 2019] Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. (2019). Provably efficient reinforcement
learning with linear function approximation. arXiv preprint arXiv:1907.05388.

8

	Lecture 23 – Lecture 23: Linear MDPs III
	Recap: LSVI-UCB Algorithm and Regret Bound
	Remarks on Model and Algorithms

	Completing the Proof of Theorem 1
	Concentration
	Least-squares estimation error
	UCB property
	Regret decomposition
	Putting together

	Preview: Randomized Numerical Linear Algebra (RandNLA)
	Technical lemmas

