
CS 839 Probability and Learning in High Dimension Lecture 24 - 04/27/2022

Lecture 24: Randomized Numerical Linear Algebra I
Lecturer: Yudong Chen Scribe: Winfred Li

In the next few classes, we will discuss randomized numerical linear algebra (RandNLA) and its applications
to a number of problems. In this lecture we consider the problem of approximate matrix multiplication, and
then begin a discussion on the problem of least squared approximation.12

1 Introduction
In RandNLA, we develop randomized algorithms for several fundamental numerical linear algebra tasks:

1. Approximate matrix multiplication (Today)

2. Least squares approximation (Today and next lecture)

3. Low-rank matrix approximation

4. (Not this semester) Graph sparsification

We will focus on the first three problems. Note that techniques developed in Problem 1 will be used in
Problem 2, which in turn will be used in Problem 3.

1.1 Efficient large-scale data processing
When processing large-scale data (in particular, streaming data), we desire methods that can be performed
with

• a few (e.g., one or two) passes of data

• limited memory (complete data might not fit in memory)

• low time complexity

A general idea is RandNLA is to use randomization to get a rough sketch of the data. There are two
main approaches:

• Random (down)sampling: randomly select a subset of data

– Pros: Easy to implement
– Cons: Quality often depends on property of data

• Random projection: rotates / projects data to lower dimensions

– Pros: Often data-agnostic, more robust
– Cons: More computationally expensive

See Figure 1 for an illustrations of the pros and cons of these two approaches.
On a high level, RandNLA involves randomized algorithm + matrix concentration/perturbation theory.

Note that Probability used in algorithm and analysis (previously only used in analysis). Applications of
RandNLA include

1Reading: [Mahoney, 2016]: “Lecture notes on randomized linear algebra. Available at https://arxiv.org/abs/1608.04481
2We thank Yuxin Chen for allowing us to draw from his slides for ELE 520: Mathematics of Data Science, Princeton

University, Fall 2020.

1

https://arxiv.org/abs/1608.04481


Figure 1: Consider estimating
∑

‖xi‖ for the points below by random sampling. In order for the estimate to be
accurate we need to include the red outlier point, for instance by increasing sampling weight for red point. On the
other hand, random projections preserve more information from data

• Scientific computing;

• Machine learning: e.g., PCA on ≥terabyte-sized problems.

2 Faster Matrix Multiplication
Given A ∈ Rm×n and B ∈ Rn×p, compute or approximate AB. A native algorithm for exactly computing
AB is given in Algorithm 1.

Algorithm 1: Vanilla algorithm for matrix multiplication

1: for i = 1, · · · ,m do
2: for k = 1, · · · , n do
3: Mi,k = Ai,:B:,k
4: return M

The computational complexity of Algorithm 1 is O(mnp), or O(n3) if m = n = p. For simplicity, we
shall assume m = n = p in the sequel unless otherwise noted.

There exists algorithms with sub-cubic time complexity, such as the Strassen algorithm for exact
matrix multiplication. The asymptotic computational complexity is ≈ O(n2.8). For various reasons, this
algorithm is ot commonly used in practice.

Our general goal is to develop randomized algorithm with time complexity = Õ(n
2

ε2 ).

2.1 A Simple Randomized Algorithm
We view AB as a sum of rank-one matrices (or outer products)

AB =
n∑
i=1

A:,iBi,:.

Our idea is to randomly sample L rank-one components. This leads to Algorithm 2.

2

https://en.wikipedia.org/wiki/Strassen_algorithm


Algorithm 2: Basic randomized algorithm for matrix multiplication

1: for l = 1, · · · , L do
2: Pick il ∈ {1, · · · , n} i.i.d. with probability P{il = k} = pk
3: return

M = 1
L

L∑
l=1

1
pil

A:,ilBil,:

A few remarks for Algorithm 2.

• {pk : k = 1, . . . , n} are called importance sampling probabilities.

• M is an unbiased estimate of AB, i.e.,

E [M ] = AB.

• The approximation error (e.g., ‖M −AB‖) depends on {pk}.

2.2 Importance Sampling Probabilities
There are two ways for choosing the probabilities {pk : k = 1, . . . , n}. The simplest one is:

• Uniform sampling
pk ≡

1
n
.

Here one can sample the index set {i1, . . . , iL} before looking at data, so it’s implementable via one
pass over data

Intuitively, one may prefer biasing towards larger rank-1 components. This suggests that we can use

• Non-uniform sampling

pk = ‖A:,k‖2‖Bk,:‖2∑n
l=1 ‖A:,l‖2‖Bl,:‖2

Note that the probabilities {pk} can be computed using one pass and O(n) memory. Nonuniform
sampling favors “larger" rank 1 matrices, with sampling probabilities proportional to

‖A:,kBk,:‖op = ‖A:,k‖2 ‖Bk,:‖2 .

It turns out the nonuniform sampling probabilities above are optimal with respect to the the mean
squared approximation error E

[
‖M −AB‖2

F
]
.

Lemma 1. E
[
‖M −AB‖2

F
]

is minimized by

pk = ‖A:,k‖2‖Bk,:‖2∑n
l=1 ‖A:,l‖2‖Bl,:‖2

. (1)

• Consequently, we call (1) the optimal sampling probabilities (w.r.t. mean squared error)

3



Proof Since E[M ] = AB, one has

E
[
‖M −AB‖2

F
]

= E

[∑
i,j

(Mi,j −Ai,:B:,j)2

]
=
∑
i,j

Var[Mi,j ]

= 1
L

∑
k

∑
i,j

A2
i,kB

2
k,j

pk
− 1
L

∑
i,j

(Ai,:B:,j)2 (check)

= 1
L

∑
k

1
pk
‖A:,k‖2

2‖Bk,:‖2
2 −

1
L
‖AB‖2

F (2)

In addition, Cauchy-Schwarz yields (
∑
k pk)

(∑
k
αk

pk

)
≥
(∑

k

√
αk
)2, with equality attained if pk ∝

√
αk.

Setting αk = ‖A:,k‖2
2‖Bk,:‖2

2 gives

E
[
‖M −AB‖2

F
]
≥ 1
L

(∑
k

‖A:,k‖2‖Bk,:‖2

)2

− 1
L
‖AB‖2

F,

where the lower bound is achieved when pk ∝ ‖A:,k‖2‖Bk,:‖2

2.3 Error Concentration
The previous analysis concerns E

[
‖M −AB‖2

F
]
, i.e., the approximation error in expectation. In practice,

one often hopes, in addition, that M is close to AB most of the time. Thus, we desire an error bound that
holds with high probability. For matrix multiplication, two error metrics are of particular interest:

• Frobenius norm error: ‖M −AB‖F, and

• spectral norm error: ‖M −AB‖.
Our general idea is to invoke matrix concentration inequalities to control these metrics. To this
end, recall the Matrix Bernstein inequality.
Theorem 1 (Matrix Bernstein). Let

{
Xl ∈ Rd1×d2 , l = 1, . . . , L

}
be a sequence of independent zero-mean

random matrices. Assume

(range) ‖Xl‖ ≤ R, ∀l = 1, . . . , L,

(variance) max
{∥∥∥E [∑L

l=1XlX
>
l

]∥∥∥ ,∥∥∥E [∑L
l=1X>l Xl

]∥∥∥} ≤ V.
Then,

P
{∥∥∥∑L

l=1Xl

∥∥∥ ≥ τ} ≤ (d1 + d2) exp
(
−τ2/2

V +Rτ/3

)
2.4 Frobenius Norm Error
We have the following bound on the approximation error in Frobenius norm.

Theorem 2 (Frobenius Norm Error of Matrix Multiplication). Suppose pk ≥ β‖A:,k‖2‖Bk,:‖2∑
l
‖A:,l‖2‖Bl,:‖2

,∀k for some

β ∈ (0, 1]. If L & logn
β , then the estimate M returned by Algorithm 2 obeys

‖M −AB‖F .

√
logn
βL
‖A‖F‖B‖F

with probability at least 1−O(n−10).

4



Proof Observe that vec(M) =
∑L
l=1 Xl, where Xl =

∑n
k=1

1
Lpk

A:,k ⊗ B>k,:1 {il = k}. These matrices
{Xl} obey

‖Xl‖2 ≤ max
k

1
Lpk
‖A:,k‖2‖Bk,:‖2 �

1
βL

n∑
k=1
‖A:,k‖2‖Bk,:‖2 =: R, (3)

E

[
L∑
l=1
‖Xl‖2

2

]
= L

n∑
k=1

P {il = k} ‖A:,k‖2
2‖Bk,:‖2

2
L2p2

k

≤
(
∑n
k=1 ‖Ak,:‖2‖Bk,:‖2)2

βL︸ ︷︷ ︸
=:V

. (4)

We then invoke matrix Bernstein to obtain

‖M −AB‖F =

∥∥∥∥∥
L∑
l=1

(Xl − E[Xl])

∥∥∥∥∥
2

.
√
V logn+R logn

�

√
logn
βL

(
n∑
k=1
‖Ak,:‖2‖Bk,:‖2

)

≤

√
logn
βL
‖A‖F‖B‖F (Cauchy-Schwarz)

A few remarks on Theorem 2:

• If L & logn
ε2β , then ‖M −AB‖F . ε‖A‖F‖B‖F.

• Time complexity: O
(
n2)︸ ︷︷ ︸

compute p′
ks

+ O

(
n2 logn
ε2

)
︸ ︷︷ ︸

form L rank-1 matrices
and compute their sum

. Note that this is one of the few cases where the

time complexity can be readily estimated. For more complex problems, bounding time complexity
requires more careful arguments and in particular is implementation dependent.

• The proof above highlights why nonuniform sampling probabilities is useful. If we instead use the
probabilities pk = 1

n , then equation (3) would become maxk n
L‖A:,k‖2‖Bk,:‖2, from which Matrix

Bernstein will result in a worst error bound.

2.5 Spectral Norm Error
We also have the following bound on the approximation error in spectral norm. For simplicity, we consider
the simpler problem of approximating AA> (i.e., B = A>).

Theorem 3. Suppose pk ≥ β‖A:,k‖2
2

‖A‖2
F
,∀k for some quantity 0 < β ≤ 1, and L & ‖A‖2

F
β‖A‖2 logn . Then the

estimate M returned by Algorithm 2 obeys

‖M −AA>‖ .

√
logn
βL
‖A‖F‖A‖

with prob. at least 1−O(n−10).

5



Proof Write M =
∑L
l=1 Zl, where Zl =

∑n
k=1

1
Lpk

A:,kA>:,k1 {il = k}. These matrices satisfy

‖Zl‖2 ≤ max
k

‖A:,k‖2
2

Lpk
≤ 1
βL
‖A‖2

F =: R∥∥∥∥∥E
[
L∑
l=1

ZlZ
>
l

]∥∥∥∥∥ =

∥∥∥∥∥L
n∑
k=1

P {il = k}
‖A:,k‖2

2
L2p2

k

A:,kA>:,k

∥∥∥∥∥
≤ 1
βL
‖A‖2

F
∥∥AA>

∥∥
= 1
βL
‖A‖2

F ‖A‖
2 =: V

Invoke matrix Bernstein to conclude that with high prob.,∥∥M −AA>
∥∥ =

∥∥∥∥∑L

l=1
(Zl − E[Zl])

∥∥∥∥ .
√
V logn+B logn

�

√
logn
βL
‖A‖F ‖A‖

A few remarks on Theorem 3:

• The error bound depends on ‖A‖F ‖A‖. In comparison, the Frobenius error bound in Theorem 2
involves ‖A‖2

F .

• If L & ‖A‖2
F

‖A‖2
logn
ε2β , then ‖M −AA>‖ . ε‖A‖2. Here ‖A‖

2
F

‖A‖2 is called the stable rank of the matrix A.
For approximately low rank matrices the stable rank ≈ 1; for high rank matrices stable rank ≈ n.
Therefore, Theorem 3 is most useful when A is approximately low rank.

• We note that Theorem 3 is a generalization of kernel approximation bound for random features from
Lecture 5.

• Can be generalized to approximate AB (Magen, Zouzias ’11) [Magen and Zouzias, 2011]

• For many problems, the spectral bound is more useful since

‖M −AB‖ ≤ ε⇒ ‖Mu−ABu‖2 ≤ ε‖u‖2

2.6 Matrix Multiplication with One Sided Information
What if we only use the information about A (but not B)?

• This situation arises when B is defined implicitly, e.g., as the solution to optimization problem.

• We will later see an example of this situation in approximate least squares with nonuniform sampling.

Suppose we choose the sample probabilities as pk ≥ β‖A:,k‖2
2

‖A‖2
F

. In this case, matrix Bernstein does NOT
give good concentration bounds. In particular, we will get a poor bound in equation (3):

R ∝ max
k

‖Bk,:‖2

‖A:,k‖2︸ ︷︷ ︸
Can be large

‖A‖2
F .

6



Nevertheless, we can still use Markov’s inequality to get some useful bound. More precisely, when pk ≥
β‖A:,k‖2

2
‖A‖2

F
, it follows from (2) that

E
[
‖M −AB‖2

F
]

= 1
L

∑
k

1
pk
‖A:,k‖2

2‖Bk,:‖2
2 −

1
L
‖AB‖2

F

≤ 1
βL

(∑
k

‖Bk,:‖2
2

)
‖A‖2

F

= ‖A‖
2
F‖B‖2

F
βL

.

Hence, Markov’s inequality yields that with prob. at least 1− 1
logn ,

‖M −AB‖2
F ≤

‖A‖2
F‖B‖2

F logn
βL

. (5)

Note that the probability is worse compared to Theorem 2, which gives 1− 1
n10 .

3 Least Squares Approximation
We next turn to the least squares (LS) problem.

3.1 Least Squares Problem
Given A ∈ Rn×d (n� d) and b ∈ Rn, the goal is to find the solution xls to the optimization problem

minimizex∈Rd ‖Ax− b‖2.

See Figure 2 for a geometric interpretation of the least squares problem, which is equivalent to computing
the orthogonal projection of b onto range(A) (the column space of A). The least squares solution xls satisfies
(Axls − b)⊥ range(A).

Figure 2: Geometric picture of least squares

Algebraically, xls satisfies the normal equation

A>Axls = A>b, or equivalently AT (Axls − b) = 0.

7



If A has full column rank, then xls is given in closed form

xls = (A>A)−1A>b = VAΣ−1
A U>A︸ ︷︷ ︸

=:A†

b,

where A = UAΣAV >A is the SVD of A, and A† is called the pseudo inverse of A (as A†A = Id).

3.2 Methods for Solving LS Problems
In practice, one rarely uses the close-form expression (A>A)−1A>b to compute the least squares solution
xls, as it involves forming and inverting the matrix A>A, which is costly and unnecessary.

Instead, one typically uses one of the following two main classes of method for computing xls.
Direct methods: these are variants of Gaussian elimination. The computational complexity is roughly

O(nd2). Examples of direct methods include:

• Cholesky decomposition: compute upper triangular matrix R s.t. A>A = R>R, and solve R>Rx =
A>b

• QR decomposition: compute QR decomposition A = QR (Q: orthonormal; R: upper triangular), and
solve Rx = Q>b

Direct methods yield high accuracy solutions. These methods are often used on dense A.
Iterative methods: Example include Conjugate gradient and variants. The computational complexity is

roughly O
(
nd · σmax(A)

σmin(A) log 1
ε

)
, which is linear in d and depends logarithmically on the target accuracy ε. Such

methods allow one to tradeoff between accuracy and computation cost. They are often used on large sparse
A, for which matrix-vector product can be computed in time linear in the sparsity of A. However, due to
the dependence on the condition number σmax(A)

σmin(A) , iterative methods may be slow on ill-conditioned problems.

We will instead look at randomized methods. The high-level goal is to achieve sample complexity of
the form Õ

(
nd/ε2

)
, which is linear in d and (hopefully) independent of the condition number of A. That

is, randomized algorithms have better dependence on d compared to direct methods, and are still fast on
ill-conditioned problem compared to iterative methods. The price we pay is a worst dependence on the
target accuracy ε.

3.3 Randomized LS Approximation
The Basic idea is to generate a sketching / sampling matrix Φ ∈ Rr×n (with r � n, e.g., via random
sampling, random projection), and solve a smaller LS problem

x̃ls = arg min
x∈Rd

‖Φ(Ax− b)‖2 (6)

For example, if Φ is a subsampling matrix of the form

Φ ∈ R2×n =
[
1 0 . . . 0
0 . . . 0 1

]
,

then
ΦA =

[
A1,:
An,:

]
∈ R2×d

picks out two rows of A.

8

https://www.mathworks.com/help/matlab/math/iterative-methods-for-linear-systems.html


Our goal is to find Φ such that x̃ls approximates xls in turns of the estimation error and fitting error,
that is,

x̃ls ≈ xls,

‖Ax̃ls − b‖2 ≈ ‖Axls − b‖2.

Before we proceed, we consider two extreme cases for the choice of |Φ.

• Φ = In×n. This Φ is easy to compute, but it does not change the LS problem and hence has no
improvement for computational cost.

• Φ = U>A . In this case, we have
ΦA = U>AUAΣV >A = ΣV T

A︸ ︷︷ ︸
A′

.

Therefore, the coefficient matrix ΦA = A′ for the subsampled LS problem (6) is product of diagonal
and orthonormal matrix. The corresponding normal equation

A′>A′︸ ︷︷ ︸
VAΣ2

A
V >

A

x̃ls = A′T b′

is easy to solve using direct methods. Moreover, the solution x̃ls = xls is exact. However, using such
Φ requires computing SVD of A, which is at least as hard as the original LS problem.

Our goal is to get the best of both worlds above, i.e., choose a Φ that is easy to compute and leads to a
subsampled LS problem that is easier to solve than the original problem.

References
[Magen and Zouzias, 2011] Magen, A. and Zouzias, A. (2011). Low rank matrix-valued chernoff bounds and

approximate matrix multiplication. In Proceedings of the twenty-second annual ACM-SIAM symposium
on Discrete Algorithms, pages 1422–1436. SIAM.

[Mahoney, 2016] Mahoney, M. W. (2016). Lecture notes on randomized linear algebra. arXiv preprint
arXiv:1608.04481.

9


	Lecture 24 – Lecture 24: Randomized Numerical Linear Algebra I
	Introduction
	Efficient large-scale data processing

	Faster Matrix Multiplication
	A Simple Randomized Algorithm
	Importance Sampling Probabilities
	Error Concentration
	Frobenius Norm Error
	Spectral Norm Error
	Matrix Multiplication with One Sided Information

	Least Squares Approximation
	Least Squares Problem
	Methods for Solving LS Problems
	Randomized LS Approximation



